Biology and mechanisms of sulfonylurea resistance in Schoenoplectiella juncoides, a noxious sedge in the rice paddy fields of Japan
Yoshinao Sada
Health and Crop Sciences Research Laboratory, Sumitomo Chemical Company, Ltd., Takarazuka, Japan
Search for more papers by this authorCorresponding Author
Akira Uchino
Division of Crop Production Systems, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, Japan
Correspondence to: Akira Uchino, Division of Crop Production Systems, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 360, Kusawa, Anou, Tsu, Mie 514-2392, Japan.
Email: [email protected]
Search for more papers by this authorYoshinao Sada
Health and Crop Sciences Research Laboratory, Sumitomo Chemical Company, Ltd., Takarazuka, Japan
Search for more papers by this authorCorresponding Author
Akira Uchino
Division of Crop Production Systems, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, Japan
Correspondence to: Akira Uchino, Division of Crop Production Systems, Central Region Agricultural Research Center, National Agriculture and Food Research Organization, 360, Kusawa, Anou, Tsu, Mie 514-2392, Japan.
Email: [email protected]
Search for more papers by this authorAbstract
Schoenoplectiella juncoides is a noxious sedge weed in rice paddy fields that has evolved resistance to sulfonylurea (SU) herbicides. The molecular basis of resistance is amino acid substitutions at Pro197, Trp574 or Asp376 in the acetolactate synthase (ALS) enzyme, which is the target of SUs. Schoenoplectiella juncoides has two ALS genes and resistant plants have point mutations that cause amino acid substitutions in either encoded protein. Single-nucleotide substitutions at the codon for Pro197 in the ALS genes can cause six types of amino acid substitutions and all of these substitutions have been found in both ALS genes among Japanese SU-resistant biotypes. Whole-plant herbicide responses differ among the amino acid substitution types. Furthermore, analyses of ALS activity in plant extracts show that the extracts’ responses to herbicides differ, depending on which ALS gene is mutated. The activity responses of the ALS extracts to the SU, imazosulfuron, showed double-sigmoid curves with plateaus of ~30% inhibition for Pro197 substitutions in ALS1 and ~70% for Pro197 substitutions in ALS2. This indicates that ALS1 and ALS2 contribute to the responses with a proportion of 7:3. The double-sigmoid curves can be reconstructed to show the responses of the resistant and susceptible enzymes separately by regression analysis. The resistance levels of the separate ALS1 or ALS2 mutated enzyme are highly correlated with the whole-plant responses, with a relationship that the former is the square of the latter. This could provide a quantitative insight into the physiological basis of resistance.
References
- Ashigh J., Corbett C.L., Smith P.J., Laplante J. and Tardif F.J. 2009. Characterization and diagnostic tests of resistance to acetohydroxyacid synthase inhibitors due to an Asp376Glu substitution in Amaranthus powellii . Pestic. Biochem. Physiol. 95, 38–46.
- Collins D.W. and Jukes T.H. 1994. Rates of transition and transversion in coding sequences since the human–rodent divergence. Genomics 20, 386–396.
- Diggle A.J., Neve P.B. and Smith F.P. 2003. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res. 43, 371–382.
- Endo M., Osakabe K., Ono K., Handa H., Shimizu T. and Toki S. 2007. Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J. 52, 157–166.
- Gerwick B.C., Mireles L.C. and Eilers R.J. 1993. Rapid diagnosis of ALS/AHAS- resistant weeds. Weed Technol. 7, 519–524.
- Hamamura K., Muraoka T., Hashimoto J., Tsuruya A., Takahashi H., Takeshita T. et al. 2003. Identification of sulfonylurea-resistant biotypes of paddy field weeds using a novel method based on their rooting responses. Weed Biol. Manag. 3, 242–246.
- Hanson B.D., Shaner D.L., Westra P. and Nissen S.J. 2006. Response of selected hard red wheat lines to imazamox as affected by number and location of resistance genes, parental background, and growth habit. Crop. Sci. 46, 1206–1211.
- Hayasaka E. 2012. Delineation of Schoenoplectiella Lye (Cyperaceae), a genus newly segregated from Schoenoplectus (Rchb.) Palla. J. Jpn. Bot. 87, 169–186.
- Imaizumi T., Kataoka Y., Ogata S. and Uchino A. 2013. Genetic diversity within and between sulfonylurea-resistant and susceptible populations of Schoenoplectus juncoides in Japan. Weed Res. 53, 290–298.
- Imaizumi T., Wang G.-X. and Tominaga T. 2008. Inheritance of sulfonylurea resistance in Monochoria vaginalis . Weed Res. 48, 448–454.
- Iwakami S., Uchino A., Watanabe H., Yamasue Y. and Inamura T. 2012. Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Manag. Sci. 68, 1098–1106.
- Iwasaki K. and Ueki K. 1979. [Chromosome numbers of three bulrushes (Scirpus Taxa).] Weed Res. (Japan) 24, 240–242 (in Japanese with English abstract).
- Jung J. and Choi H.-K. 2010. Systematic rearrangement of Korean Scirpus L. s.l. (Cyperaceae) as inferred from nuclear ITS and chloroplast rbcL sequences. J. Plant Biol. 53, 222–232.
- Kitagawa T. and Okawa S. 2014. [Occurrence of Scirpus juncoides var. ohwianus with cross resistance to ALS-inhibiting herbicides in paddy fields of Miyagi prefecture.] The 53rd WSSJ Annual Meeting Abstracts (2014), 36 (in Japanese).
-
Kohara H., Konno K. and Takekawa M. 1999. [Occurrence of sulfonylurea-resistant biotypes of Scirpus juncoides Roxb. var. ohwianus T. Koyama in paddy fields of Hokkaido Prefecture, Japan.] J. Weed Sci. 44, 228–235 (in Japanese with English abstract).
10.3719/weed.44.228 Google Scholar
- Kojima K. 2005. Inasaku zasso no hassei jyokyo no henka to bojyo taisaku. Kongetsu no Nogyo, March of 2005, 17-23 ( in Japanese).
- Koyama T. 1958. Taxonomic study of the genus Scirpus Linne. J. Fac. Sci. Univ. Tokyo, Sect. III 7, 271–363.
-
Koyama T. 1962. The genus Scirpus Linn. Can. J. Bot. 40, 913–937.
10.1139/b62-087 Google Scholar
- Lye K.A. 2003. Schoenoplectiella Lye, gen. nov. (Cyperaceae). Lidia 6, 21–29.
- Morita H. 2001. Suiden zasso no jyosozai teikosei zasso hen-i hassei doko ni kansuru ankeito chosa Shokucho 35, 3–10 (in Japanese).
- Ohno S., Yanagisawa K., Hanai R. and Muraoka T. 2004. [Shoot-regeneration method: a simplified method of evaluating sulfonylurea herbicide resistance.] J. Weed Sci. Technol. 49, 277–283 (in Japanese with English abstract).
- Palla E. 1888. Zur Kenntnis der Gattung Scirpus . Bot. Jahrb. Syst. 10, 293–301.
- Roux F., Matejicek A. and Reboud X. 2005. Response of Arabidopsis thaliana to 22 ALS inhibitors: baseline toxicity and cross-resistance of csr1-1 and csr1-2 resistant mutants. Weed Res. 45, 220–227.
- Sada Y., Ikeda H. and Kizawa S. 2013a. Resistance levels of sulfonylurea-resistant Schoenoplectus juncoides (Roxb.) Palla having various Pro197 mutations in acetolactate synthase to imazosulfuron, bensulfuron-methyl, metsulfuronmethyl and imazaquin-ammonium. Weed Biol. Manag. 13, 53–61.
- Sada Y., Ikeda H., Yamato S. and Kizawa S. 2013b. Characterization of sulfonylurea-resistant Schoenoplectus juncoides having a target-site Asp376Glu mutation in the acetolactate synthase. Pestic. Biochem. Physiol. 107, 106–111.
- Sada Y., Ikeda H. and Kizawa S. 2013c. Rapid diagnosis of sulfonylurea-resistant Schoenoplectus juncoides [Roxb.] Palla using polymerase chain reaction-restriction fragment length polymorphism and isogene-specific direct sequencing. Weed Biol. Manag. 13, 1–9.
- Sada Y., Kizawa S. and Ikeda H. 2012. Varied occurrence of diverse sulfonylurea-resistant biotypes of Schoenoplectus juncoides (Roxb.) Palla in Japan, as classified by an acetolactate synthase gene mutation. Weed Biol. Manag. 12, 168–176.
- Shibuya K., Yoshioka T., Yoshio S., Satoh S., Yoshida S. and Hashiba T. 1999. [Analysis of acetolactate synthase genes of sulfonylurea herbicide-resistant and -susceptible biotypes in Scirpus juncoides subsp. juncoides .] J. Weed Sci. Technol. 44 (Suppl.), 72–73 (in Japanese).
- Tan S., Evans R.R., Dahmer M.L., Singh B.K. and Shaner D.L. 2005. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61, 246–257.
- Tanaka Y. 2003. Properties of acetolactate synthase from sulfonylurea-resistant Scirpus juncoides Roxb. var. ohwianus T. Koyama. Pestic. Biochem. Physiol. 77, 147–153.
- Tranel P.J. and Wright T.R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50, 700–712.
- Tranel P.J., Wright T.R. and Heap I.M. 2017. Mutations in Herbicide-Resistant Weeds to ALS Inhibitors. [Cited 25 January 2017.] Available from URL: http://www.weedscience.com
- Uchino A. and Watanabe H. 2007. Effects of pyruvate and sucrose on acetolactate synthase activity in Lindernia species and Schoenoplectus juncoides in an in vivo assay. Weed Biol. Manag. 7, 184–187.
- Uchino A., Imaizumi T., Asai M. and Watanabe H. 2012. [Effect of seed germination characteristics on the development of sulfonylurea resistance in Scirpus juncoides var. ohwianus .] J. Weed. Sci. Technol. 57 (Suppl., 24 (in Japanese).
- Uchino A., Iwakami S., Tominaga T. and Itoh K. 2017. Herbicide Resistant Weeds in Japan. [Cited January 27, 2017.] Available from URL: http://www.wssj.jp/~hr/
- Uchino A., Kohara H., Yoshida S., Ohdan H. and Shibaike H. 2006. [Estimation of frequencies of sulfonylurea resistance genes in Scirpus juncoides var. ohwianus .] J. Weed. Sci. Technol. 51 (Suppl., 92–93 (in Japanese).
- Uchino A., Ogata S., Kohara H., Yoshida S., Yoshioka T. and Watanabe H. 2007. Molecular basis of diverse responses to acetolactate synthase (ALS)-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides . Weed Biol. Manag. 7, 89–96.
- Uchino A., Watanabe H., Kikuchi H., Miura Y., Ogata S., Usui T. et al. 2005. [Sulfonylurea-resistant paddy weeds in the six prefectures of the Tohoku district: the number of instances judged as the infection by resistant biotypes in 1996–2003.] Tohoku Weed J. 5, 24–28 in Japanese.
- Uchino A., Watanabe H., Wang G.-X. and Itoh K. 1999. Light requirement in rapid diagnosis of sulfonylurea-resistant weeds of Lindernia spp. (Scrophulariaceae). Weed Technol. 13, 680–684.
- Walter K.L., Strachan S.D., Ferry N.M., Albert H.H., Castlea L.A. and Sebastian S.A. 2014. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Manag. Sci. 70, 1831–1839.
- Whaley C.M., Wilson H.P. and Westwood J.H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55, 83–90.
- Willenborg C.J., Brûlé-Babel A.L., Friesen L.F. and Van Acker R.C. 2008. Response of heterozygous and homozygous imidazolinone-resistant spring wheat genotypes to imazamox. Crop. Sci. 48, 2107–2114.
- Yamada Y., Tominaga T. and Ohsako T. 2013. Microsatellite variability of sulfonylurea-resistant and susceptible populations of Schoenoplectus juncoides (Cyperaceae) in Kinki, Japan. Weed Res. 53, 429–439.
- Yamato S., Sada Y. and Ikeda H. 2013. Characterization of acetolactate synthase from sulfonylurea herbicide-resistant Schoenoplectus juncoides . Weed Biol. Manag. 13, 104–113.
-
Yoshida S., Onodera K., Soeda T., Takeda Y., Sasaki S., Hoshi N. et al. 1999. [Occurrence of Scirpus juncoides subsp. juncoides, resistant to sulfonylurea herbicides in Miyagi Prefecture.] J. Weed Sci. Technol. 44 (Suppl., 70–71 (in Japanese).
10.3719/weed.44.Suppl_70 Google Scholar
-
Yoshida S., Tani N., Uchino A. and Hashimoto J. 2004. [Mutations of the genes in Scirpus juncoides which has different levels of resistant biotypes to sulfonylurea herbicide.] J. Weed Sci. Technol. 49 (Suppl., 60–61 (in Japanese).
10.3719/weed.49.Supplement_60 Google Scholar
- Yu Q. and Powles S.B. 2014. Resistance to AHAS inhibitor herbicides: current understanding. Pestic. Biochem. Physiol. 70, 1340–1350.
- Yu Q., Zhang X.-Q., Hashem A., Walsh M.J. and Powles S.B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci. 51, 831–838.
- Zhao J. and Winkler M.E. 2000. Reduction of GC → TA transversion mutation by overexpression of MutS in Escherichia coli K-12. J. Bacteriol. 182, 5025–5028.