Hydraulic reconstruction of giant paleolandslide-dammed lake outburst floods in high-mountain region, eastern Tibetan Plateau: A case study of the Upper Minjiang River valley
Corresponding Author
Junxue Ma
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China
Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing, China
Correspondence
Junxue Ma, National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China.
Email: [email protected]
Search for more papers by this authorJian Chen
School of Engineering and Technology, China University of Geosciences Beijing, Beijing, China
Search for more papers by this authorChong Xu
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China
Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing, China
Search for more papers by this authorCorresponding Author
Junxue Ma
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China
Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing, China
Correspondence
Junxue Ma, National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China.
Email: [email protected]
Search for more papers by this authorJian Chen
School of Engineering and Technology, China University of Geosciences Beijing, Beijing, China
Search for more papers by this authorChong Xu
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China
Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing, China
Search for more papers by this authorAbstract
Landslide-dammed lakes are potentially hazardous and catastrophic for their possible failures and outburst floods (OFs) that will cause disastrous damage and life-threatening losses, especially in the alpine areas where seismicity is strong and frequent, such as the eastern margin of the Tibetan Plateau. This study focused on spreading an effective numerical model to reconstruct downstream hazards induced by a giant ancient landslide-dammed lake outburst flood (LLOF) in the upper Minjiang River valley, eastern Tibetan Plateau based on the integration of the hydraulic characteristics of the upstream dammed lake, dam failure and erosion process, and downstream OF dynamics. The peak discharge levels and paleohydraulics of the LLOF were reconstructed using single-embankment dam-break program and one-dimensional steady hydraulic numerical model. The results reveal that the maximum peak discharge of the Diexi paleo LLOF was 73,060–82,235 m3/s, with an uncertainty bound of 73,000–90,000 m3/s (mean value: 81,500 m3/s). Which inferred that the Diexi paleo LLOF was one of the largest known LLOFs in the view of worldwide scope comparing with other types of floods. Then, the hydraulic characteristics and route evolution of the LLOF were simulated in one-dimensional unsteady numerical model. The results showed that the Diexi paleo LLOF took 7.47 h to transport from Diexi to Wenchuan within the simulated section of 91.23 km, with an average propagation velocity of 3.39 m/s. At the time of 15.57 h, the simulating section (between Diexi and Wenchuan) reached the maximum extent of inundation which was 664.91 km2, with an average value of 7.29 km2/km. Our modeling supports that the numerical model can be used successfully to reconstruct the hydraulics of a paleo LLOF in deep confined gorge environment. The reconstructed paleo LLOF data are of great significance to enrich the regional megaflood records and provide valuable information for geological hazard controls and OF risk assessment within the upper catchment of Minjiang River at the eastern margin of the Tibetan Plateau.
CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Alho, P., & Aaltonen, J. (2008). Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods. Hydrological Processes, 22(10), 1537–1547. https://doi.org/10.1002/hyp.6692
- Alho, P., Baker, V. R., & Smith, L. N. (2010). Paleohydraulic reconstruction of the largest glacial Lake Missoula draining(s). Quaternary Science Reviews, 29(23), 3067–3078. https://doi.org/10.1016/j.quascirev.2010.07.015
- Amini, A., Arya, A., Eghbalzadeh, A., & Javan, M. (2017). Peak flood estimation under overtopping and piping conditions at Vahdat dam, Kurdistan Iran. Arabian Journal of Geosciences, 10(6), 127. https://doi.org/10.1007/s12517-017-2854-y
- Baker, V. R. (2006). Palaeoflood hydrology in a global context. Catena, 66(1–2), 161–168. https://doi.org/10.1016/j.catena.2005.11.016
- Baker, V. R. (2013). 9.26 global late quaternary fluvial Paleohydrology: With special emphasis on Paleofloods and Megafloods. In J. F. Shroder (Ed.), Treatise on geomorphology (pp. 511–527). Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00252-9
10.1016/B978-0-12-374739-6.00252-9 Google Scholar
- Balasch, J. C., Ruiz-Bellet, J. L., & Tuset, J. (2011). Historical flash floods retromodelling in the Ondara River in Tàrrega (NE Iberian Peninsula). Natural Hazards and Earth System Sciences, 11(12), 3359–3371. https://doi.org/10.5194/nhess-11-3359-2011
- Balogun, O. S., & Ganiyu, H. O. (2017). Study and analysis of Asa River hypothetical dam break using HEC-RAS. Nigerian Journal of Technology, 36(1), 315–321. https://doi.org/10.4314/njt.v36i1.39
10.4314/njt.v36i1.39 Google Scholar
- Ben Khalfallah, C., & Saidi, S. (2018). Spatiotemporal floodplain mapping and prediction using HEC-RAS—GIS tools: Case of the Mejerda river, Tunisia. Journal of African Earth Sciences, 142, 44–51. https://doi.org/10.1016/j.jafrearsci.2018.03.004
- Benito, G., Ballesteros-Cánovas, J. A., & Díez-Herrero, A. (2023). Chapter 2—Paleoflood hydrology: Reconstructing rare events and extreme flood discharges. In J. F. Shroder, P. Paron, & G. D. Baldassarre (Eds.), Hydro-meteorological hazards, risks, and disasters ( 2nd ed., pp. 33–83). Elsevier. https://doi.org/10.1016/B978-0-12-819101-9.00009-1
10.1016/B978-0-12-819101-9.00009-1 Google Scholar
- Benn, D. I., Owen, L. A., Finkel, R. C., & Clemmens, S. (2006). Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: Implications for the interpretation of intermontane lacustrine records. Quaternary Science Reviews, 25(21), 2729–2748. https://doi.org/10.1016/j.quascirev.2006.02.018
- Bladé, E., Gómez-Valentín, M., Dolz, J., Aragón-Hernández, J. L., Corestein, G., & Sánchez-Juny, M. (2012). Integration of 1D and 2D finite volume schemes for computations of water flow in natural channels. Advances in Water Resources, 42, 17–29. https://doi.org/10.1016/j.advwatres.2012.03.021
- Blown, I., & Church, M. (1985). Catastrophic lake drainage within the Homathko River basin, British Columbia. Canadian Geotechnical Journal, 22(4), 551–563. https://doi.org/10.1139/t85-075
- Bradley, W. C., & Mears, A. I. (1980). Calculations of flows needed to transport coarse fraction of Boulder Creek alluvium at Boulder, Colorado. Geological Society of America Bulletin, 91(3_Part_II), 1057–1090. https://doi.org/10.1130/GSAB-P2-91-1057
- Brunner, G. W. (1995). HEC-RAS river analysis system user's manual version 1.0. US Army Corps of Engineers Hydraulic Engineering Center.
- Brunner, G. W. (2016a). HEC-RAS river analysis system hydraulic reference manual version 5.0. US Army Corps of Engineers Hydraulic Engineering Center.
- Brunner, G. W. (2016b). HEC-RAS river analysis system user's manual version 5.0. US Army Corps of Engineers Hydraulic Engineering Center.
- Brunner, G. W. (2021). HEC-RAS river analysis system user's manual version 6.0. US Army Corps of Engineers Hydraulic Engineering Center.
- Butt, M. J., Umar, M., & Qamar, R. (2013). Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in northern Pakistan. Natural Hazards, 65, 241–254. https://doi.org/10.1007/s11069-012-0361-8
- Capart, H. (2013). Analytical solutions for gradual dam breaching and downstream river flooding. Water Resources Research, 49(4), 1968–1987. https://doi.org/10.1002/wrcr.20167
- Cenderelli, D. A. (2000). Floods from natural and artificial dam failures. In E. E. Wohl (Ed.), Inland flood hazards: Human, riparian, and aquatic communities (pp. 73–103). Cambridge University Press. https://doi.org/10.1017/CBO9780511529412.004
10.1017/CBO9780511529412.004 Google Scholar
- Chen, J., Dai, F., Lv, T., & Cui, Z. (2013). Holocene landslide-dammed lake deposits in the upper Jinsha River, SE Tibetan plateau and their ages. Quaternary International, 298, 107–113. https://doi.org/10.1016/j.quaint.2012.09.018
- Chen, J., Zhou, W., Cui, Z., Li, W., Wu, S., & Ma, J. (2018). Formation process of a large paleolandslide-dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan plateau: Constraints from OSL and 14 C dating. Landslides, 15, 2399–2412. https://doi.org/10.1007/s10346-018-1056-3
- Chen, Z., Ma, L., Yu, S., Chen, S., Zhou, X., Sun, P., & Li, X. (2015). Back analysis of the draining process of the Tangjiashan barrier lake. Journal of Hydraulic Engineering, 141(4), 05014011. https://doi.org/10.1061/(ASCE)HY.1943-7900.000096
- Chow, V. T. (1959). Open-channel hydraulics. McGraw-Hill.
- Costa, J. E. (1983). Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado front range. Geological Society of America Bulletin, 94(8), 986–1004. https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2
- Costa, J. E., & Schuster, R. L. (1988). The formation and failure of natural dams. Geology Society of America Bulletin, 100(7), 1054–1068. https://doi.org/10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
- Cutler, P. M., Colgan, P. M., & Mickelson, D. M. (2002). Sedimentologic evidence for outburst floods from the Laurentide ice sheet margin in Wisconsin, USA: Implications for tunnel-channel formation. Quaternary International, 90(1), 23–40. https://doi.org/10.1016/S1040-6182(01)00090-8
- Dai, F. C., Lee, C. F., Deng, J. H., & Tham, L. G. (2005). The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology, 65(3–4), 205–221. https://doi.org/10.1016/j.geomorph.2004.08.011
- Delaney, K. B., & Evans, S. G. (2015). The 2000 Yigong landslide (Tibetan plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology, 246, 377–393. https://doi.org/10.1016/j.geomorph.2015.06.020
- Deng, B., Liu, S., Liu, S., Jansa, L., Li, Z., & Zhong, Y. (2013). Progressive Indosinian N-S deformation of the Jiaochang structure in the Songpan-Ganzi Fold-Belt, Western China. PLoS ONE, 8(10), e76732. https://doi.org/10.1371/journal.pone.0076732
- Deng, D., Wang, C., & Peng, P. (2019). Basic characteristics and evolution of geological structures in the eastern margin of the Qinghai-Tibet plateau. Earth Sciences Research Journal, 23(4), 283–291. https://doi.org/10.15446/esrj.v23n4.84000
- Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., & Efstratiadis, A. (2016). Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology, 534, 478–492. https://doi.org/10.1016/j.jhydrol.2016.01.020
- Dubey, S., & Goyal, M. K. (2020). Glacial Lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas. Water Resources Research, 56(4), e2019WR026533. https://doi.org/10.1029/2019WR026533
- Evans, S. G. (1986). The maximum discharge of outburst floods caused by the breaching of man-made and natural dams. Canadian Geotechnical Journal, 23(3), 385–387. https://doi.org/10.1139/t86-053
- Fan, X., Dufresne, A., Subramanian, S. S., Strom, A., Hermanns, R., Stefanelli, C. T., Hewitt, K., Yunus, A. P., Dunning, S., & Capra, L. (2020). The formation and impact of landslide dams–state of the art. Earth-Science Reviews, 203, 103116. https://doi.org/10.1016/j.earscirev.2020.103116
- Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., & Huang, R. (2019). Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Reviews of Geophysics, 57(2), 421–503. https://doi.org/10.1029/2018RG000626
- Fread, D. L. (1996). Dam-breach floods. In V. P. Singh (Ed.), Hydrology of disasters (pp. 85–126). Springer. https://doi.org/10.1007/978-94-015-8680-1_5
10.1007/978-94-015-8680-1_5 Google Scholar
- Froehlich, D. C. (2022a). Peak flood discharge from a landslide dam outburst. Natural Hazards Review, 23(2), 04022001. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000545
- Froehlich, D. C. (2022b). Predicting landslide dam outburst flood peak discharge. Geohazard Mitigation.
10.1007/978-981-16-6140-2_11 Google Scholar
- Gorum, T., Fan, X., van Westen, C. J., Huang, R., Xu, Q., Tang, C., & Wang, G. (2011). Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133(3), 152–167. https://doi.org/10.1016/j.geomorph.2010.12.030
- Gu, C., Li, S., Liu, M., Hu, K., & Wang, P. (2023). Monitoring glacier lake outburst flood (GLOF) of Lake Merzbacher using dense Chinese high-resolution satellite images. Remote Sensing, 15(7), 1941. https://doi.org/10.3390/rs15071941
- Guo, Y., Ge, Y., Mao, P., & Liu, T. (2023). Reconstruction of mid-Holocene extreme flood events in the upper Minjiang River valley, eastern Tibetan plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 617, 111517. https://doi.org/10.1016/j.palaeo.2023.111517
- Guo, Y., Huang, C. C., Pang, J., Zhou, Y., Zha, X., & Mao, P. (2017). Reconstruction palaeoflood hydrology using slackwater flow depth method in the Yanhe River valley, middle Yellow River basin, China. Journal of Hydrology, 544, 156–171. https://doi.org/10.1016/j.jhydrol.2016.11.017
- Herget, J., & Fontana, A. (2019). Palaeohydrology: Traces, tracks and trails of extreme events. Springer. https://doi.org/10.1007/978-3-030-23315-0
- Hewitt, K. (1998). Catastrophic landslides and their effects on the upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology, 26(1–3), 47–80. https://doi.org/10.1016/S0169-555X(98)00051-8
- Hu, G., Huang, C., Zhou, Y., Pang, J., Zha, X., Guo, Y., Zhang, Y., & Zhao, X. (2016). Extreme paleoflood events 3200–3000 a BP in the Jingyuan–Jingtai reaches of the upper Yellow River, China. The Holocene, 26(5), 790–800. https://doi.org/10.1177/0959683615618257
- Hu, L., Yang, X., Li, Q., & Li, S. (2020). Numerical simulation and risk assessment of cascade reservoir dam-break. Water, 12(6), 1730. https://doi.org/10.3390/w12061730
- Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., & Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2), 316–330. https://doi.org/10.1139/t01-099
- Inoue, K., Mori, T., & Mizuyama, T. (2013). Three large historical landslide dams and outburst disasters in the north fossa magna area, Central Japan. International Journal of Erosion Control Engineering, 5(2), 145–154. https://doi.org/10.13101/ijece.5.145
10.13101/ijece.5.145 Google Scholar
- Jiang, W., Xie, X., Zhang, J., Sun, C., Huang, W., Sheng, Q., & Feng, X. (2009). Evidence of multistage late quaternary strong earthquakes on typical segments of longmenshan active fault zone in Sichuan, China. Science in China Series D: Earth Sciences, 52(9), 1412–1425. https://doi.org/10.1007/s11430-009-0145-5
- Kataoka, K. S. (2011). Geomorphic and sedimentary evidence of a gigantic outburst flood from Towada caldera after the 15 ka Towada–Hachinohe ignimbrite eruption, northeast Japan. Geomorphology, 125(1), 11–26. https://doi.org/10.1016/j.geomorph.2010.08.006
- Kehew, A. E., & Lord, M. L. (1986). Origin and large-scale erosional features of glacial-lake spillways in the northern Great Plains. Geological Society of America Bulletin, 97(2), 162–177. https://doi.org/10.1130/0016-7606(1986)97&amp;lt;162:OALEFO&amp;gt;2.0.CO;2
- Kim, H.-J., & Cho, Y.-S. (2011). Numerical model for flood routing with a Cartesian cut-cell domain. Journal of Hydraulic Research, 49(2), 205–212. https://doi.org/10.1080/00221686.2010.547037
- Korup, O., & Tweed, F. (2007). Ice, moraine, and landslide dams in mountainous terrain. Quaternary Science Reviews, 26(25), 3406–3422. https://doi.org/10.1016/j.quascirev.2007.10.012
- Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9–10), 645–654. https://doi.org/10.1016/S1474-7065(02)00049-9
- Li, X., & Huang, C. (2017). Holocene palaeoflood events recorded by slackwater deposits along the Jin-shan gorges of the middle Yellow River, China. Quaternary International, 453, 85–95. https://doi.org/10.1016/j.quaint.2017.07.028
- Lipscomb, S. W. (1989). Flow and hydraulic characteristics of the Knik-Matanuska River estuary, cook inlet, southcentral Alaska (U.S. Geological Survey Water-Resources Investigations Report 89-4064).
- Liu, D., Cui, Y., Wang, H., Jin, W., Wu, C., Bazai, N. A., Zhang, G., Carling, P. A., & Chen, H. (2021). Assessment of local outburst flood risk from successive landslides: Case study of Baige landslide-dammed lake, upper Jinsha river, eastern Tibet. Journal of Hydrology, 599, 126294. https://doi.org/10.1016/j.jhydrol.2021.126294
- Liu, W., Carling, P. A., Hu, K., Wang, H., Zhou, Z., Zhou, L., Liu, D., Lai, Z., & Zhang, X. (2019). Outburst floods in China: A review. Earth-Science Reviews, 197, 102895. https://doi.org/10.1016/j.earscirev.2019.102895
- Liu, W., Hu, K., Carling, P. A., Lai, Z., Cheng, T., & Xu, Y. (2018). The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangtze River, southeastern margin of the Tibetan plateau. Geomorphology, 321, 167–173. https://doi.org/10.1016/j.geomorph.2018.08.028
- Liu, Z., Guo, X., Zhou, X., Fu, H., Xia, Q., & Li, S. (2019). Cascading dam breach process simulation using a coupled modeling platform. Science China Technological Sciences, 62(8), 1455–1466. https://doi.org/10.1007/s11431-018-9271-1
- Lord, M. L., & Kehew, A. E. (1987). Sedimentology and paleohydrology of glacial-lake outburst deposits in southeastern Saskatchewan and northwestern North Dakota. Geological Society of America Bulletin, 99(5), 663–673. https://doi.org/10.1130/0016-7606(1987)99<663:SAPOGO>2.0.CO;2
- Lützow, N., Veh, G., & Korup, O. (2023). A global database of historic glacier lake outburst floods. Earth System Science Data, 15(7), 2983–3000. https://doi.org/10.5194/essd-15-2983-2023
- Ma, J., Chen, J., Cui, Z., Zhou, W., Chen, R., & Wang, C. (2022). Reconstruction of catastrophic outburst floods of the Diexi ancient landslide-dammed lake in the upper Minjiang River, Eastern Tibetan Plateau. Natural Hazards, 112(2), 1191–1221. https://doi.org/10.1007/s11069-022-05223-z
- Ma, J., Chen, J., Cui, Z., Zhou, W., Liu, C., Guo, P., & Shi, Q. (2018). Sedimentary evidence of outburst deposits induced by the Diexi paleolandslide-dammed lake of the upper Minjiang River in China. Quaternary International, 464, 460–481. https://doi.org/10.1016/j.quaint.2017.09.022
- Mao, P., Guo, Y., & Liu, T. (2023). Holocene extreme palaeofloods recorded by slackwater deposits along the Jiacha gorge of the Yarlung Tsangpo River valley, southern Tibetan plateau. Catena, 231, 107360. https://doi.org/10.1016/j.catena.2023.107360
- Mayo, L. R. (1989). Advance of Hubbard glacier and 1986 outburst of Russell fiord, Alaska, USA. Annals of Glaciology, 13, 189–194. https://doi.org/10.3189/S0260305500007874
10.3189/S0260305500007874 Google Scholar
- Mekonnen, M. A., & Dargahi, B. (2007). Three dimensional numerical modelling of flow and sediment transport in rivers. International Journal of Sediment Research, 22(3), 188–198.
- Morris, M. W., Hassan, M. A. A. M., & Vaskinn, K. A. (2007). Breach formation: Field test and laboratory experiments. Journal of Hydraulic Research, 45(Suppl. 1), 9–17. https://doi.org/10.1080/00221686.2007.9521828
- O'Connor, J. E. (1993). Hydrology, hydraulics, and geomorphology of the Bonneville flood (Vol. 274). Geological Society of America.
10.1130/SPE274-p1 Google Scholar
- O'Connor, J. E., Clague, J. J., Walder, J. S., Manville, V., & Beebee, R. A. (2022). 6.36—Outburst floods. In J. F. Shroder (Ed.), Treatise on geomorphology ( 2nd ed., pp. 765–819). Academic Press. https://doi.org/10.1016/B978-0-12-818234-5.00007-9
10.1016/B978-0-12-818234-5.00007-9 Google Scholar
- Peng, M., & Zhang, L. M. (2012). Breaching parameters of landslide dams. Landslides, 9(1), 13–31. https://doi.org/10.1007/s10346-011-0271-y
- Pierce, M. W., Thornton, C. I., & Abt, S. R. (2010). Predicting peak outflow from breached embankment dams. Journal of Hydrologic Engineering, 15(5), 338–349. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000197
- Ruan, H., Chen, H., Wang, T., Chen, J., & Li, H. (2021). Modeling flood peak discharge caused by overtopping failure of a landslide dam. Water, 13(7), 921. https://doi.org/10.3390/w13070921
- Ruiz-Bellet, J. L., Castelltort, X., Balasch, J. C., & Tuset, J. (2017). Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula). Journal of Hydrology, 545, 339–354. https://doi.org/10.1016/j.jhydrol.2016.12.041
- Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., & Stoffel, M. (2016). Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography: Earth and Environment, 41(1), 3–28. https://doi.org/10.1177/0309133316658614
- Russell, A. J., & Knudsen, Ó. (2002). The effects of glacier-outburst flood flow dynamics on ice-contact deposits: November 1996 Jökulhlaup, Skeiðarársandur, Iceland. In I. P. Martini, V. R. Baker, & G. Garzón (Eds.), Flood and megaflood processes and deposits (pp. 67–83). Wiley. https://doi.org/10.1002/9781444304299.ch5
10.1002/9781444304299.ch5 Google Scholar
- Shi, Z. M., Guan, S. G., Peng, M., Zhang, L. M., Zhu, Y., & Cai, Q. P. (2015). Cascading breaching of the Tangjiashan landslide dam and two smaller downstream landslide dams. Engineering Geology, 193, 445–458. https://doi.org/10.1016/j.enggeo.2015.05.021
- Shrestha, F., Steiner, J. F., Shrestha, R., Dhungel, Y., Joshi, S. P., Inglis, S., Ashraf, A., Wali, S., Walizada, K. M., & Zhang, T. (2023). A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia. Earth System Science Data, 15(9), 3941–3961. https://doi.org/10.5194/essd-15-3941-2023
- Singh, H., Varade, D., de Vries, M. V. W., Adhikari, K., Rawat, M., Awasthi, S., & Rawat, D. (2023). Assessment of potential present and future glacial lake outburst flood hazard in the Hunza valley: A case study of Shisper and Mochowar glacier. Science of the Total Environment, 868, 161717. https://doi.org/10.1016/j.scitotenv.2023.161717
- Stoesser, T., Wilson, C. A. M. E., Bates, P. D., & Dittrich, A. (2003). Application of a 3D numerical model to a river with vegetated floodplains. Journal of Hydroinformatics, 5(2), 99–112. https://doi.org/10.2166/hydro.2003.0008
10.2166/hydro.2003.0008 Google Scholar
- Taylor, C., Robinson, T. R., Dunning, S., Rachel Carr, J., & Westoby, M. (2023). Glacial lake outburst floods threaten millions globally. Nature Communications, 14, 487. https://doi.org/10.1038/s41467-023-36033-x
- Thorndycraft, V. R., Benito, G., Rico, M., Sopeña, A., Sánchez-Moya, Y., & Casas, A. (2005). A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. Journal of Hydrology, 313(1–2), 16–31. https://doi.org/10.1016/j.jhydrol.2005.02.003
- Walder, J. S., & Costa, J. E. (1996). Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms, 21(8), 701–723. https://doi.org/10.1002/(SICI)1096-9837(199608)21:8<701::AID-ESP615>3.0.CO;2-2
- Walder, J. S., & O'Connor, J. E. (1997). Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams. Water Resources Research, 33(10), 2337–2348. https://doi.org/10.1029/97WR01616
- Wang, B., Yang, S., & Chen, C. (2022). Landslide dam breaching and outburst floods: A numerical model and its application. Journal of Hydrology, 609, 127733. https://doi.org/10.1016/j.jhydrol.2022.127733
- Wang, H., Cui, P., Yang, A., Tang, J., Wen, S., Yang, Z., Zhou, L., Liu, W., & Bazai, N. A. (2023). New evidence of high-magnitude Holocene floods in the Purlung Tsangpo River, southeastern Tibetan plateau. Catena, 233, 107516. https://doi.org/10.1016/j.catena.2023.107516
- Wang, L., Chen, Z., Wang, N., Sun, P., Yu, S., Li, S., & Du, X. (2016). Modeling lateral enlargement in dam breaches using slope stability analysis based on circular slip mode. Engineering Geology, 209, 70–81. https://doi.org/10.1016/j.enggeo.2016.04.027
- Wang, P., Zhang, B., Qiu, W., & Wang, J. (2011). Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet. Journal of Asian Earth Sciences, 40(4), 865–872. https://doi.org/10.1016/j.jseaes.2010.04.006
- Wang, W., Nie, Y., Zhang, H., Wang, J., Deng, Q., Liu, L., Zhang, S., Lyu, Q., & Zhang, L. (2024). A generic framework for glacial lake outburst flood investigation: A case study of Zalai Tsho, Southeast Tibet. Catena, 234, 107614. https://doi.org/10.1016/j.catena.2023.107614
- Wang, X., Zhang, G., Veh, G., Sattar, A., Wang, W., Allen, S. K., Bolch, T., Peng, M., & Xu, F. (2024). Reconstructing glacial lake outburst floods in the Poiqu River basin, central Himalaya. Geomorphology, 449, 109063. https://doi.org/10.1016/j.geomorph.2024.109063
- Wang, X. Q., Li, Y. R., Yuan, Y., Zhou, Z., & Wang, L. S. (2014). Palaeoclimate and palaeoseismic events discovered in Diexi barrier lake on the Minjiang River, China. Natural Hazards and Earth System Sciences, 14(8), 2069–2078. https://doi.org/10.5194/nhess-14-2069-2014
- Wang, Z., Yue, G., Lin, H., & Li, M. (2022). Numerical analysis of dynamic evolution characteristics of a large rock landslide in Tangjiashan. Geofluids, 17, 5423743. https://doi.org/10.1155/2022/5423743
10.1155/2022/5423743 Google Scholar
- Wu, L. Z., Deng, H., Huang, R. Q., Zhang, L. M., Guo, X. G., & Zhou, Y. (2019). Evolution of lakes created by landslide dams and the role of dam erosion: A case study of the Jiajun landslide on the Dadu River, China. Quaternary International, 503(Pt A), 41–50. https://doi.org/10.1016/j.quaint.2018.08.001
10.1016/j.quaint.2018.08.001 Google Scholar
- Wu, L. Z., Zhao, D. J., Zhu, J. D., Peng, J. B., & Zhou, Y. (2020). A Late Pleistocene river-damming landslide, Minjiang River, China. Landslides, 17(2), 433–444. https://doi.org/10.1007/s10346-019-01305-5
- Wu, Q., Zhao, Z., Liu, L., Granger, D. E., Wang, H., Cohen, D. J., Wu, X., Ye, M., Bar-Yosef, O., Lu, B., Zhang, J., Zhang, P., Yuan, D., Qi, W., Cai, L., & Bai, S. (2016). Outburst flood at 1920 BCE supports historicity of China's great flood and the Xia dynasty. Science, 353(6299), 579–582. https://doi.org/10.1126/science.aaf0842
- Wu, W., Rodi, W., & Wenka, T. (2000). 3D numerical modeling of flow and sediment transport in open channels. Journal of Hydraulic Engineering, 126(1), 4–15. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(4)
- Xu, D. (1988). Characteristics of debris flow caused by outburst of glacial lake in Boqu river, Xizang, China, 1981. GeoJournal, 17(4), 569–580. https://doi.org/10.1007/BF00209443
10.1007/BF00209443 Google Scholar
- Xu, H., Chen, J., Cui, Z., & Chen, R. (2020). Sedimentary facies and depositional processes of the Diexi ancient dammed lake, upper Minjiang River, China. Sedimentary Geology, 398, 105583. https://doi.org/10.1016/j.sedgeo.2019.105583
- Xu, Y., & Zhang, L. M. (2009). Breaching parameters for earth and rockfill dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1957–1970. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162
- Yang, L., Lu, Z., Ouyang, C., Zhao, C., Hu, X., & Zhang, Q. (2023). Glacial lake outburst flood monitoring and modeling through integrating multiple remote sensing methods and HEC-RAS. Remote Sensing, 15(22), 5327. https://doi.org/10.3390/rs15225327
- Yang, W., Fang, J., & Liu-Zeng, J. (2021). Landslide-lake outburst floods accelerate downstream hillslope slippage. Earth Surface Dynamics Discussions, 9(5), 1251–1262. https://doi.org/10.5194/esurf-9-1251-2021
10.5194/esurf-9-1251-2021 Google Scholar
- Yoon Tae, H., & Kang, S.-K. (2004). Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Engineering, 130(7), 678–688. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(678)
- Zhang, Q., Chen, Z., Li, Y., Yu, S., Wang, L., Zhou, X., & Wu, S. (2023). Quantitative assessment on landslide dam risks and mitigation: An in-depth study on the Baige lake breach. Environmental Earth Sciences, 82(4), 1–20. https://doi.org/10.1007/s12665-023-10778-6
- Zhong, Q., Chen, S., Wang, L., & Shan, Y. (2020). Back analysis of breaching process of Baige landslide dam. Landslides, 17(7), 1681–1692. https://doi.org/10.1007/s10346-020-01398-3
- Zhong, Q., Wang, L., Chen, S., Chen, Z., Shan, Y., Zhang, Q., Ren, Q., Mei, S., Jiang, J., Hu, L., & Liu, J. (2021). Breaches of embankment and landslide dams—State of the art review. Earth-Science Reviews, 216, 103597. https://doi.org/10.1016/j.earscirev.2021.103597
- Zhong, Q. M., Chen, S. S., Mei, S. A., & Cao, W. (2018). Numerical simulation of landslide dam breaching due to overtopping. Landslides, 15(6), 1183–1192. https://doi.org/10.1007/s10346-017-0935-3
- Zhou, G. G. D., Zhou, M., Shrestha, M. S., Song, D., Choi, C. E., Cui, K. F. E., Peng, M., Shi, Z., Zhu, X., & Chen, H. (2019). Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floods. Geomorphology, 334, 29–43. https://doi.org/10.1016/j.geomorph.2019.02.035