Virtual image correlation of magnetic resonance images for 3D geometric modelling of pelvic organs
Corresponding Author
Zhifan Jiang
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Univ. Lille, CNRS UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Villeneuve d'Ascq, France
Correspondence
Zhifan Jiang, Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France.
Email: [email protected]
Search for more papers by this authorOlivier Mayeur
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorJean-François Witz
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorPauline Lecomte-Grosbras
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorJeremie Dequidt
Univ. Lille, CNRS UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Villeneuve d'Ascq, France
Search for more papers by this authorMichel Cosson
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
CHU Lille, Service de Chirurgie Gynécologique, Lille, France
Univ. Lille, Faculté de Médecine, Lille, France
Search for more papers by this authorMathias Brieu
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorCorresponding Author
Zhifan Jiang
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Univ. Lille, CNRS UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Villeneuve d'Ascq, France
Correspondence
Zhifan Jiang, Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France.
Email: [email protected]
Search for more papers by this authorOlivier Mayeur
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorJean-François Witz
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorPauline Lecomte-Grosbras
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorJeremie Dequidt
Univ. Lille, CNRS UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Villeneuve d'Ascq, France
Search for more papers by this authorMichel Cosson
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
CHU Lille, Service de Chirurgie Gynécologique, Lille, France
Univ. Lille, Faculté de Médecine, Lille, France
Search for more papers by this authorMathias Brieu
Laboratoire de Mécanique de Lille, CNRS FRE-3723, Villeneuve d'Ascq, France
Centrale Lille, Villeneuve d'Ascq, France
Search for more papers by this authorAbstract
Numerical simulation of pelvic system could lead to a better understanding of common pathology through objective and reliable analyses of pelvic mobility according to mechanical principles. In clinical context, patient-specific simulation has the potential for a proper patient-personalised cure. For this purpose, a simulable 3D geometrical model, well suited to patient anatomy, is required. However, the geometric modelling of pelvic system from medical images (MRI) is a complex operator-dependent and time-consuming process, not adapted to patient-specific applications. This paper is addressing this challenging computational problem. The objective is to develop a technique, providing a smooth, consistent, and readily usable 3D geometrical model, seamlessly from image to simulation. In this paper, we use a generic topologically-simplified B-Spline model to represent pelvic organs. The presented paper develops a Virtual Image Correlation method to find the best correlation between the geometry and the image. The final reconstructed geometrical model is to be compatible with meshing and finite element simulation. Then, a variety of tests are performed to prove the concept, through both prototypical and pelvic models. Finally, since the pelvic system is complex, including structures hardly identifiable in MRI, some feasible solutions to introduce more complex pelvic models are also discussed.
REFERENCES
- 1R. C. Bump, A. Mattiasson, K. Bø, L. P. Brubaker, J. O. DeLancey, P. Klarskov, B. L. Shull, A. R. Smith, Am. J. Obstet. Gynecol. 1996, 175(1), 10.
- 2M. Dell'oro, P. Collinet, G. Robin, C. Rubod, Gynecol. Obstet. Fertil. 2013, 41(1), 58.
- 3P. Lecomte-Grosbras, M. Nassirou-Diallo, J.-F. Witz, D. Marchal, J. Dequidt, S. Cotin, M. Cosson, C. Duriez, M. Brieu, in MICCAI, Nagoya, Japan, Springer, Berlin, Heidelberg 2013, 307.
- 4O. Mayeur, G. Lamblin, P. Lecomte-Grosbras, M. Brieu, C. Rubod, M. Cosson, in Biomedical Simulation, 2014, 8789, 220.
- 5Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, T. J. R. Hughes, Comput. Methods Appl. Mech. Eng. 2007, 196(29), 2943.
- 6M. Ruess, Z. Yosibash, N. Trabelsi, E. Rank, PAMM 2011, 11(1), 117.
10.1002/pamm.201110050 Google Scholar
- 7J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of Cad and Fea, John Wiley & Sons, United Kingdom 2009.
10.1002/9780470749081 Google Scholar
- 8 Diagnostic Imaging-MRI and CT of the Female Pelvis (Eds: B. Hamm, R. Forstner), Diagnostic Imaging, Springer-Verlag, Berlin Heidelberg 2007.
10.1007/978-3-540-68212-7 Google Scholar
- 9L. Piegl, W. Tiller, The nurbs book, 2nd ed., Monographs in visual communication, Springer-Verlag, Berlin Heidelberg 1997.
10.1007/978-3-642-59223-2 Google Scholar
- 10O. Mayeur, E. Jeanditgautier, J.-F. Witz, P. Lecomte-Grosbras, M. Cosson, C. Rubod, M. Brieu, in Computational Biomechanics for Medicine: From Algorithms to Models and Applications, Springer International Publishing, Cham 2017, 135.
10.1007/978-3-319-54481-6_12 Google Scholar
- 11C. Lee, S. Huh, T. A. Ketter, M. Unser, Comput. Biol. Med. 1998, 28(3), 309.
- 12(Eds: N. Paragios, Y. Chen, O. Faugeras), Handbook of Mathematical Models in Computer Vision Edited by N. Paragios, Y. Chen, O. Faugeras, Springer, Boston, MA, Boston, MA 2006.
10.1007/0-387-28831-7 Google Scholar
- 13W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d surface construction algorithm, in Proceedings of the 14th Annual conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH '87, Anaheim, California, USA 1987, 163.
- 14R. Shekhar, E. Fayyad, R. Yagel, J. F. Cornhill, Octree-based decimation of marching cubes surfaces, in Visualization '96. Proceedings, San Francisco, CA, USA 1996, 335.
- 15R. Kikinis, S. D. Pieper, K. G. Vosburgh, in Intraoperative Imaging and Image-Guided Therapy, Springer New York, New York, NY 2014, 277.
10.1007/978-1-4614-7657-3_19 Google Scholar
- 16M. Kass, A. Witkin, D. Terzopoulos, Int. J. Comput. Vis. 1988, 1(4), 321.
- 17C. Xu, J. L. Prince, IEEE Trans. Image Process. 1998, 7(3), 359.
- 18S. Luo, R. Li, S. Ourselin, A new deformable model using dynamic gradient vector flow and adaptive balloon forces, in APRS Workshop on Digital Image Computing, Brisbane, Queensland, Australia 2003, 9.
- 19T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Comput. Vis. Image Underst. 1995, 61(1), 38.
- 20T. Heimann, H.-P. Meinzer, Med. Image Anal. 2009, 13(4), 543.
- 21H. Lamecker, S. Zachow, in Computational Radiology for Orthopaedic Interventions, Springer International Publishing, Cham 2016, 1.
- 22B. Semin, H. Auradou, M. L. M. François, Eur. Phys. J. Appl. Phys. 2011, 56(1), 10701– p1–10 .
- 23J. Réthoré, M. L. M. François, Opt. Lasers Eng. 2014, 52, 145.
- 24Z. Jiang, J.-F. Witz, P. Lecomte-Grosbras, J. Dequidt, C. Duriez, M. Cosson, S. Cotin, M. Brieu, Strain 2015, 51(3), 235.
- 25Z. Jiang, J.-F. Witz, P. Lecomte-Grosbras, J. Dequidt, S. Cotin, C. Rubod, C. Duriez, M. Brieu, Strain 2017, 53(2), e12224.
- 26T. W. Sederberg, S. R. Parry, SIGGRAPH Comput. Graph. 1986, 20(4), 151.
10.1145/15886.15903 Google Scholar
- 27M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge 2003.
- 28M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, B. Levy, Polygon Mesh Processing, CRC Press Taylor & Francis Group, Hoboken, NJ 2010.
10.1201/b10688 Google Scholar
- 29W. Nagel, J. Microsc. 1988, 152, 597. https://doi.org/10.1111/j.1365-2818.1988.tb01425.x
10.1111/j.1365-2818.1988.tb01425.x Google Scholar
- 30J. Schöberl, Comput. Vis. Sci. 1997, 1(1), 41.
10.1007/s007910050004 Google Scholar
- 31L. P. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel, Feature sensitive surface extraction from volume data, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA 2001, 57.
- 32P. B. Bornemann, F. Cirak, Comput. Methods Appl. Mech. Eng. 2013, 253, 584.
- 33S. M. Kleinendorst, J. P. M. Hoefnagels, R. C. Fleerakkers, M. P. F. H. L. van Maris, E. Cattarinuzzi, C. V. Verhoosel, M. G. D. Geers, Strain 2016, 52(4), 336.
- 34T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and t-nurccs, in ACM SIGGRAPH 2003 Papers, New York, NY, USA 2003, 477.
- 35T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, T. Lyche, T-spline simplification and local refinement, in ACM SIGGRAPH 2004 Papers, New York, NY, USA 2004, 276.