High-resolution quantitative acoustic microscopy of cutaneous carcinoma and melanoma: Comparison with histology
Corresponding Author
Inna Seviaryna
University of Windsor, Windsor, Ontario
Correspondence
Inna Seviaryna, University of Windsor, Windsor, ON.
Email: [email protected]
Search for more papers by this authorEugene Malyarenko
Sonamed Technologies LLC, Birmingham, Michigan
Search for more papers by this authorCorresponding Author
Inna Seviaryna
University of Windsor, Windsor, Ontario
Correspondence
Inna Seviaryna, University of Windsor, Windsor, ON.
Email: [email protected]
Search for more papers by this authorEugene Malyarenko
Sonamed Technologies LLC, Birmingham, Michigan
Search for more papers by this authorAbstract
Background
The increased incidence rate of skin cancers during the last decades is alarming. One of the significant difficulties in the histopathology of skin cancers is appearance variability due to the heterogeneity of diseases or tissue preparation and staining process. This study aims to investigate whether the high-resolution acoustic microscopy has the potential for identifying and quantitatively classifying skin cancers.
Material/Methods
Unstained standard formalin-fixed skin tissue samples were used for ultrasonic examination. The high-frequency acoustic microscope equipped with the 320 MHz transducer was utilized to visualize skin structure. Fourier transform was performed to calculate the sound speed and attenuation in the tissue.
Results
The acoustic images demonstrate good concordance with the traditional histology images. All histological features in the tumour were easily identifiable on acoustic images. Each skin cancer type has its combination of ultrasonic properties significantly different from the healthy skin.
Conclusions
High-resolution acoustic imaging strengthened with quantitative analysis shows a potential to work as an auxiliary imaging modality assisting pathologists to lean to the particular decision in doubtful cases. The method can also assist surgeon to ensure the complete resection of a tumour.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interest.
REFERENCES
- 1Paolino G, Donati M, Didona D, Mercuri S, Cantisani C. Histology of non-melanoma skin cancers: an update. Biomedicines. 2017; 5(4): 71.
- 2Bonerandi JJ, Beauvillain C, Caquant L, et al. Guidelines for the diagnosis and treatment of cutaneous squamous cell carcinoma and precursor lesions. J Eur Acad Dermatology Venereol. 2011; 25(Suppl. 5): 1-51.
- 3Andrėkutė K, Linkevičiūtė G, Raišutis R, Valiukevičienė S, Makštienė J. Automatic differential diagnosis of melanocytic skin tumors using ultrasound data. Ultrasound Med Biol. 2016; 42(12): 2834-2843.
- 4Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control. 2006; 34(Suppl. 10): 98-110. https://doi.org/10.1016/j.ajic.2006.05.295.
- 5Rastgoo M, Garcia R, Morel O, Marzani F. Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph. 2015; 43: 44-52.
- 6Korotkov K, Garcia R. Computerized analysis of pigmented skin lesions: A review. Artif Intell Med. 2012; 56: 69-90.
- 7Troxel DB. Pitfalls in the diagnosis of malignant melanoma: findings of a risk management panel study. Am J Surg Pathol. 2003; 27: 1278-1283.
- 8Ruiter DJ, Van Dijk MCRF, Ferrier CM. Current diagnostic problems in melanoma pathology. Semin Cutan Med Surg. 2003; 22(1): 33-41.
- 9Edwards SL, Blessing K. Problematic pigmented lesions: approach to diagnosis. J Clin Pathol. 2000; 53(6): 409-418.
- 10Lin MJ, Mar V, McLean C, Wolfe R, Kelly JW. Diagnostic accuracy of malignant melanoma according to subtype. Australas J Dermatol. 2014; 55(1): 35-42.
- 11Gunawan AI, Hozumi N, Takahashi K, et al. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells. Ultrasonics. 2015; 63: 102-110.
- 12Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb). 2017; 7: 5-19.
- 13Rastgoo M, Garcia R, Morel O, Marzani F. Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph. 2015; 43: 44-52.
- 14Bandarchi B, Jabbari CA, Vedadi A, Navab R. Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol. 2013; 66(8): 644-648.
- 15Garbe C, Peris K, Hauschild A, et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline - Update 2016. Eur J Cancer. 2016; 63: 201-217.
- 16Doroski D, Tittmann BR, Miyasaka C. Study of biomedical specimens using scanning acoustic microsocpy. In: P Andre Michael, ed. Acoustical Imaging, vol. 28. San Diego, CA: Springer; 2007: 26-33.
10.1007/1-4020-5721-0_2 Google Scholar
- 17Weder G, Hendriks-Balk MC, Smajda R, et al. Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties. Nanomed Nanotechnol Biol Med. 2014; 10: 141-148.
- 18Taloni A, Alemi AA, Ciusani E, Sethna JP, Zapperi S, La Porta CAM. Mechanical properties of growing melanocytic nevi and the progression to melanoma. PLoS One. 2014; 9: e94229.
- 19Kirkpatrick SJ, Wang RK, Duncan DD, Kulesz-Martin M, Lee K. Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt Express. 2006; 14: 9770.
- 20Hinz T, Wenzel J, Schmid-Wendtner MH. Real-time tissue elastography: a helpful tool in the diagnosis of cutaneous melanoma? J Am Acad Dermatol. 2011; 65: 424-426.
- 21Miura K, Yamamoto S. A scanning acoustic microscope discriminates cancer cells in fluid. Sci Rep. 2015; 5: 1-11.
- 22Fadhel MN, Berndl ESL, Strohm EM, Kolios MC. High-frequency acoustic impedance imaging of cancer cells. Ultrasound Med Biol. 2015; 41(10): 2700-2713.
- 23Maev RG. Investigation of the Microstructure and Physical-Mechanical Properties of Biological Tissues. In: RG Maev, eds. Acoustic Microscopy: Fundamentals and Applications. Weinheim, Germany: Wiley-VCH; 2008: 187-241.
10.1002/9783527623136.ch8 Google Scholar
- 24Yamaguchi T, Inoue K, Yoshida K, et al. Acoustic characteristics of fatty and fibrotic liver measured by an 80-MHz and 250 MHz scanning acoustic microscopy. IEEE Int Ultrason Symp (IUS). 2013: 393-396.
- 25Miura K, Yamamoto S. Histological imaging of gastric tumors by scanning acoustic microscope. Br J Appl Sci Technol. 2014; 4(1): 1-17.
10.9734/BJAST/2014/5101 Google Scholar
- 26Miura K, Nasu H, Yamamoto S. Scanning acoustic microscopy for characterization of neoplastic and inflammatory lesions of lymph nodes. Sci Rep. 2013; 3: 1-10.
- 27Sasaki H, Saijo Y, Tanaka M, Nitta S, Yambe T, Terasawa Y. Characterization of renal angiomyolipoma by scanning acoustic microscopy. J Pathol. 1997; 181: 455-461.
10.1002/(SICI)1096-9896(199704)181:4<455::AID-PATH788>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 28Weiss E, Anastasiadis P, Pilarczyk G, Lemor R, Zinin P. Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control. 2007; 54(11): 2257–2271.
- 29Brand S, Weiss EC, Lemor RM, Kolios MC. High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med Biol. 2008; 34(9): 1396–1407.
- 30Tittmann BR, Miyasaka C, Maeva E, Shum D. Fine mapping of tissue properties on excised samples of melanoma and skin without the need for histological staining. IEEE Trans Ultrason Ferroelectr Freq Control. 2013; 60(2): 320-331.
- 31Saijo Y, Tanaka M, Okawai H, Sasaki H, Nitta SI, Dunn F. Ultrasonic tissue characterization of photodamaged skin by scanning aocutsic microscopy. Tokai J Exp Clin Med. 2005; 30(4): 217-225.
- 32Strohm EM, Pasternak M, Mercado M, Rui M, Kolios MC, Czarnota GJ. A comparison of cellular ultrasonic properties during apoptosis and mitosis using acoustic microscopy. Proc - IEEE Ultrason Symp. San Diego, CA. 2010: 608-611.
- 33Olerud JE, O'Brien WD, Riederer-Henderson MA, et al. Ultrasonic assessment of skin and wounds with the scanning laser acoustic microscope. J Invest Dermatol. 1987; 88(5): 615-623.
- 34Cantrell JH Jr, Goans RE, Roswell RL. Acoustic impedance variations at burn–nonburn interfaces in porcine skin. J Acoust Soc Am. 1978; 64: 731.
- 35Saijo Y, Hagiwara Y, Kobayashi K, Okada K, Tanaka A, Hozumi N. Three-dimensional ultrasound imaging of regenerated skin with high frequency ultrasound. 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Paris. 2008: 1231-1234.
- 36Barr RJ, White GM, Jones JP, Shaw LB, Ross PA. Scanning acoustic microscopy of neoplastic and inflammatory cutaneous tissue specimens. J Invest Dermatol. 1991; 96(1): 38-42.
- 37Sasaki H, Saijo Y, Tanaka M, Nitta S. Influence of tissue preparation on the acoustic properties of tissue sections at high frequencies. Ultrasound Med Biol. 2003; 29(9): 1367-1372.
- 38Briggs A, Kolosov O. Acoustic Microscopy ( 2nd ed.). Oxford: Oxford University Press; 2010: 1-384.
- 39Hozumi N, Yamashita R, Lee CK, et al. Time-frequency analysis for pulse driven ultrasonic microscopy for biological tissue characterization. Ultrasonics. 2004; 42(1–9): 717-722.
- 40Rivera C, Venegas B. Histological and molecular aspects of oral squamous cell carcinoma (Review). Oncol Lett. 2014; 8(1): 7-11.
- 41Cockerell CJ. Histopathology of incipient intraepidermal squamous cell carcinoma ("actinic keratosis"). J Am Acad Dermatol. 2000; 42(1): S11-S17.
- 42Piotrzkowska-Wroblewska H, Litniewski J, Szymanska E, Nowicki A. Quantitative sonography of basal cell carcinoma. Ultrasound Med Biol. 2015; 41(3): 748-759.
- 43Petrella LI, de Azevedo Valle H, Issa PR, Martins CJ, Machado JC, Pereira WCA. Statistical analysis of high frequency ultrasonic backscattered signals from basal cell carcinomas. Ultrasound Med Biol. 2012; 38(10): 1811-1819.
- 44Stockfleth E, Rosen T, Shumack S. Histopathology of Skin Cancer. In: E Stockfleth, T Rosen, S Shumack, eds. Managing Skin Cancer. Berlin Heidlberg: Springer-Verlag; 2010: 1-226.
10.1007/978-3-540-79347-2 Google Scholar
- 45Wortsman X. Sonography of the primary cutaneous melanoma: a review. Radiol Res Pract. 2012; 2012: 1-6.
10.1155/2012/814396 Google Scholar
- 46Razazzadeh N, Khalili M. Classification of the pigmented skin lesions in dermoscopic images by shape features extraction. IJMEC. 2015; 5(15): 2151-2156.
- 47Lekka M, Gil D, Pogoda K, et al. Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys. 2012; 518(2): 151-156.
- 48Hayashi K, Iwata M. Stiffness of cancer cells measured with an AFM indentation method. J Mech Behav Biomed Mater. 2015; 49: 105-111.
- 49Lekka M. Atomic force microscopy a tip for diagnosing cancer. Nat Publ Gr. 2012; 7(11): 691-692.
- 50Plodinec M, Loparic M, Monnier CA, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012; 7(11): 757-765.
- 51Taggart LR, Baddour RE, Giles A, Czarnota GJ, Kolios MC. Ultrasonic characterization of whole cells and isolated nuclei. Ultrasound Med Biol. 2007; 33(3): 389-401.
- 52Watanabe T, Kuramochi H, Takahashi A, et al. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (2)-epigallocatechin gallate-treated cells. J Cancer Res Clin Oncol. 2012; 138(5): 859-866.
- 53Botar-Jid CM, Cosgarea R, BolboacǍ SD, et al. Assessment of cutaneous melanoma by use of very-high-frequency ultrasound and real-time elastography. Am J Roentgenol. 2016; 206(4): 699-704.
- 54Sarna M, Zadlo A, Czuba-Pelech B, Urbanska K. Nanomechanical phenotype of melanoma cells depends solely on the amount of endogenous pigment in the cells. Int J Mol Sci. 2018; 19(2): 607.
- 55Dasgeb B, Morris MA, Mehregan D, Siegel EL. Quantified ultrasound elastography in the assessment of cutaneous carcinoma. Br J Radiol. 2015; 88(1054): 19-21.
- 56Bruno I, Kumon RE, Heartwell B, Maeva E. Ex vivo breast tissue imaging and characterization using acoustic microscopy. In: MP Andre et al. (eds). Acoustical Imaging. Dordrecht: Springer; 2007; 28: 279-287.
10.1007/1-4020-5721-0_29 Google Scholar
- 57Yoshida S, Yamada H, Shioki Y, et al. Visualization of cancer distribution for living tissues using acoustic impedance microscope. IEEE Int Ultrason Symp (IUS). Prague. 2013: 2014-2017.