Chemical gasification: An alternative approach to in vitro maturation of bovine oocytes
David L. Gómez-López
Colombian Corporation of Agricultural Research (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA), Research Center Tibaitatá, Mosquera, Colombia
Search for more papers by this authorDiego A. Velasco-Acosta
Colombian Corporation of Agricultural Research (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA), Research Center Tibaitatá, Mosquera, Colombia
Search for more papers by this authorAugusto Schneider
Federal University of Pelotas (Universidade Federal de Pelotas), Pelotas, RS, Brazil
Search for more papers by this authorJuan F. Rocha
Colombian Corporation of Agricultural Research (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA), Research Center Tibaitatá, Mosquera, Colombia
Search for more papers by this authorCorresponding Author
Diego F. Dubeibe-Marín
Faculty of Agricultural Sciences, University of Applied and Environmental Sciences (Universidad de Ciencias Aplicadas y Ambientales – UDCA), Bogotá, Colombia
Correspondence
Diego F. Dubeibe-Marín, Calle 222 N° 55 – 37, Bogotá 111166, Colombia.
Email: [email protected]
Search for more papers by this authorDavid L. Gómez-López
Colombian Corporation of Agricultural Research (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA), Research Center Tibaitatá, Mosquera, Colombia
Search for more papers by this authorDiego A. Velasco-Acosta
Colombian Corporation of Agricultural Research (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA), Research Center Tibaitatá, Mosquera, Colombia
Search for more papers by this authorAugusto Schneider
Federal University of Pelotas (Universidade Federal de Pelotas), Pelotas, RS, Brazil
Search for more papers by this authorJuan F. Rocha
Colombian Corporation of Agricultural Research (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA), Research Center Tibaitatá, Mosquera, Colombia
Search for more papers by this authorCorresponding Author
Diego F. Dubeibe-Marín
Faculty of Agricultural Sciences, University of Applied and Environmental Sciences (Universidad de Ciencias Aplicadas y Ambientales – UDCA), Bogotá, Colombia
Correspondence
Diego F. Dubeibe-Marín, Calle 222 N° 55 – 37, Bogotá 111166, Colombia.
Email: [email protected]
Search for more papers by this authorAbstract
This study aimed to evaluate the effect of chemical gasification and HEPES as alternative systems to pH control during in vitro maturation on bovine oocytes competence. Groups of 20 bovine cumulus oocytes complexes (COCs) were randomly distributed and cultured for 24 h in one of the following experimental groups: (i) chemical reaction (ChRG) system: CO2 generated from sodium bicarbonate and citric acid reaction (ii) culture media TCM-HEPES (HEPES-G); and (iii) control group (CNTG) in conventional incubator. After in vitro maturation (IVM), the COCs were in vitro fertilized (IVF), and in vitro cultivated (IVC) in a conventional incubator. We evaluated oocyte nuclear maturation, cleavage and blastocyst rates, in addition to the relative mRNA expression of BAX, BMP-15, AREG and EREG genes in oocytes and cumulus cells. The proportion of oocytes in metaphase II was higher in CNTG and ChRG (77.57% and 77.06%) than in the HEPES-G (65.32%; p = .0408 and .0492, respectively). The blastocyst production was similar between CNTG and ChRG (26.20% and 28.47%; p = .4232) and lower (p = .001) in the HEPES-G (18.71%). The relative mRNA expression of BAX gene in cumulus cells was significantly higher (p = .0190) in the HEPES-G compared to the CNTG. Additionally, the relative mRNA expression of BMP-15 gene was lower (p = .03) in oocytes from HEPES-G compared to the CNTG. In conclusion, inadequate atmosphere control has a detrimental effect on oocyte maturation. Yet, the use of chemical gasification can be an efficient alternative to bovine COCs cultivation.
CONFLICT OF INTEREST STATEMENT
None.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Aardema, H., Lolicato, F., van de Lest, C. H., Brouwers, J. F., Vaandrager, A. B., van Tol, H. T., Roelen, B. A., Vos, P. L., Helms, J. B., & Gadella, B. M. (2013). Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biology of Reproduction, 88(6), 164. https://doi.org/10.1095/biolreprod.112.106062
- Alves, D. F., Rauber, L. P., Rubin, F. B., Bernardi, M. L., Dezen, D., Silva, C. A., & Rubin, M. I. (2003). Desenvolvimento embrionário in vitro de oócitos bovinos mantidos em líquido folicular ou TCM-hepes. Brazilian Journal of Veterinary Research and Animal Science, 40(4), 279–286. https://doi.org/10.1590/S1413-95962003000400007
10.1590/S1413-95962003000400007 Google Scholar
- Arshad, M. S., Sedhain, K., Hussain, A., Abbas, N., Mudassir, J., Mehmood, F., Irfan, M., & Latif, S. (2019). Quantification of carbon dioxide released from effervescent granules as a predictor of formulation quality using modified Chittick apparatus. Tropical Journal of Pharmaceutical Research, 18(3), 449–458. https://doi.org/10.4314/tjpr.v18i3.1
- Azari, M., Kafi, M., Ebrahimi, B., Fatehi, R., & Jamalzadeh, M. (2017). Oocyte maturation, embryo development and gene expression following two different methods of bovine cumulus-oocyte complexes vitrification. Veterinary Research Communications, 41(1), 49–56. https://doi.org/10.1007/s11259-016-9671-8
- Bachvarova, R. (1985). Gene expression during oogenesis and oocyte development in mammals. In Oogenesis (Vol. 1, pp. 453–524). Springer US. https://doi.org/10.1007/978-1-4615-6814-8_11
10.1007/978-1-4615-6814-8_11 Google Scholar
- Badr, H., Bongioni, G., Abdoon, A. S. S., Kandil, O., & Puglisi, R. (2007). Gene expression in the in vitro- produced preimplantation bovine embryos. Zygote, 15(4), 355–367. https://doi.org/10.1017/S0967199407004315
- Barceló-Fimbres, M., Campos-Chillón, L. F., Mtango, N. R., Altermatt, J., Bonilla, L., Koppang, R., & Verstegen, J. P. (2015). Improving in vitro maturation and pregnancy outcome in cattle using a novel oocyte shipping and maturation system not requiring a CO2 gas phase. Theriogenology, 84(1), 109–117. https://doi.org/10.1016/j.theriogenology.2015.02.020
- Bettegowda, A., Patel, O. V., Ireland, J. J., & Smith, G. W. (2006). Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis i. Molecular Reproduction and Development, 73(3), 267–278. https://doi.org/10.1002/mrd.20333
- Boruszewska, D., Sinderewicz, E., Kowalczyk-Zieba, I., Grycmacher, K., & Woclawek-Potocka, I. (2015). The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus–oocyte complexes: Cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Reproductive Biology and Endocrinology, 13(1), 44. https://doi.org/10.1186/s12958-015-0044-x
- Bunel, A., Jorssen, E. P., Merckx, E., Leroy, J. L., Bols, P. E., & Sirard, M. A. (2015). Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus-oocyte complexes with high or low developmental potential. Theriogenology, 83(2), 228–237. https://doi.org/10.1016/j.theriogenology.2014.09.019
- Cairo Consensus Group. (2020). ‘There is only one thing that is truly important in an IVF laboratory: Everything’ Cairo consensus guidelines on IVF culture conditions. Reproductive Biomedicine Online, 40(1), 33–60. https://doi.org/10.1016/j.rbmo.2019.10.003
- Hamm, L. L., Nakhoul, N., & Hering-Smith, K. S. (2015). Acid-base homeostasis. Clinical Journal of the American Society of Nephrology, 10(12), 2232–2242. https://doi.org/10.2215/CJN.07400715
- Hosoe, M., Kaneyama, K., Ushizawa, K., Hayashi, K., & Takahashi, T. (2011). Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reproductive Biology and Endocrinology, 9(1), 33. https://doi.org/10.1186/1477-7827-9-33
- Kathirvel, M., Soundian, E., & Kumanan, V. (2013). Differential expression dynamics of growth differentiation factor9 (GDF9) and bone morphogenetic factor15 (BMP15) mRNA transcripts during in vitro maturation of buffalo (Bubalus bubalis) cumulus–oocyte complexes. Springerplus, 2(1), 206. https://doi.org/10.1186/2193-1801-2-206
- Lonergan, P., & Fair, T. (2016). Maturation of oocytes in vitro. Annual Review of Animal Biosciences, 4(1), 255–268. https://doi.org/10.1146/annurev-animal-022114-110822
- Montagner, M. M., Gonçalves, P. B. D., Neves, J. P., Costa, L. F. S., Bortolotto, E. B., Farias, A. M., & Stranieri, P. (2000). Hepes na produção de embriões bovinos in vitro. Ciência Rural, 30(3), 469–474. https://doi.org/10.1590/S0103-84782000000300016
10.1590/S0103-84782000000300016 Google Scholar
- Palasz, A. T., Breña, P. B., De la Fuente, J., & Gutiérrez-Adán, A. (2008). The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology, 70(9), 1461–1470. https://doi.org/10.1016/j.theriogenology.2008.06.092
- Prochazka, R., Blaha, M., & Němcová, L. (2017). Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes. Biology of Reproduction, 97(4), 537–549. https://doi.org/10.1093/biolre/iox112
- Rho, G.-J., Balasubramanian, S., Kim, D.-S., Son, W.-J., Cho, S.-R., Kim, J.-G., Mohana Kumar, B., & Choe, S.-Y. (2007). Influence of in vitro oxygen concentrations on preimplantation embryo development, gene expression and production of hanwoo calves following embryo transfer. Molecular Reproduction and Development, 74(4), 486–496. https://doi.org/10.1002/mrd.20502
- Rincón, J. A. A., Pradieé, J., Remião, M. H., Collares, T. V., Mion, B., Gasperin, B. G., Rovani, M. T., Corrêa, M. N., Pegoraro, L. M. C., & Schneider, A. (2019). Effect of high-density lipoprotein on oocyte maturation and bovine embryo development in vitro. Reproduction in Domestic Animals, 54(3), 445–455. https://doi.org/10.1111/rda.13373
- Rovani, M. T., Ilha, G. F., Gasperin, B. G., Nóbrega, J. E., Siddappa, D., Glanzner, W. G., Antoniazzi, A. Q., Bordignon, V., Duggavathi, R., & Gonçalves, P. B. D. (2017). Prostaglandin F2α-induced luteolysis involves activation of signal transducer and activator of transcription 3 and inhibition of AKT signaling in cattle. Molecular Reproduction and Development, 84(6), 486–494. https://doi.org/10.1002/mrd.22798
- Silva, L. K. X., Reis, A. N., Silva, A. O. A., Sousa, J. S., Souza, A. J. O., & Vale, W. G. (2011). Transporte de oócitos bovinos em meio de maturação por diferentes períodos de tempo sem controle da atmosfera gasosa. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(1), 74–80. https://doi.org/10.1590/S0102-09352011000100012
10.1590/S0102-09352011000100012 Google Scholar
- Suzuki, T., Sumantri, C., Khan, N. H. A., Murakami, M., & Saha, S. (1999). Development of a simple, portable carbon dioxide incubator for in vitro production of bovine embryos. Animal Reproduction Science, 54(3), 149–157. https://doi.org/10.1016/s0378-4320(98)00134-1
- Swain, J. E. (2010). Optimizing the culture environment in the IVF laboratory: Impact of pH and buffer capacity on gamete and embryo quality. Reproductive Biomedicine Online, 21(1), 6–16. https://doi.org/10.1016/j.rbmo.2010.03.012
- Swain, J. E. (2011). A self-contained culture platform using carbon dioxide produced from a chemical reaction supports mouse blastocyst development in vitro. Journal of Reproduction and Development, 57(4), 551–555. https://doi.org/10.1262/jrd.11-022M
- Swain, J. E. (2012). Media composition: pH and buffers. In G. Smith, J. Swain, & T. Pool (Eds.), Embryo culture (Vol. 912, pp. 161–175). Humana Press. https://doi.org/10.1007/978-1-61779-971-6_10
10.1007/978-1-61779-971-6_10 Google Scholar
- Swain, J. E., & Pool, T. B. (2009). New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reproductive Biomedicine Online, 18(6), 799–810. https://doi.org/10.1016/S1472-6483(10)60029-6
- Twagiramungu, H., Morin, N., Guilbault, L. A., Sirard, M. A., & Bousquet, D. (1998). Media and time of oocytes transport influence their developmental competence for in vitro production of bovine embryos. Theriogenology, 49(1), 299. https://doi.org/10.1016/S0093-691X(98)90652-5
10.1016/S0093-691X(98)90652-5 Google Scholar
- Van Blerkom, J., Ombelet, W., Klerkx, E., Janssen, M., Dhont, N., Nargund, G., & Campo, R. (2014). First births with a simplified culture system for clinical IVF and embryo transfer. Reproductive Biomedicine Online, 28(3), 310–320. https://doi.org/10.1016/j.rbmo.2013.11.012
- Will, M. A., Clark, N. A., & Swain, J. E. (2011). Biological pH buffers in IVF: Help or hindrance to success. Journal of Assisted Reproduction and Genetics, 28(8), 711–724. https://doi.org/10.1007/s10815-011-9582-0
- Yao, T., & Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16(2), 99–117. https://doi.org/10.1002/rmb2.12024