Neuroanatomical predictors of real-time fMRI-based anterior insula regulation. A supervised machine learning study
Corresponding Author
Andrea Caria
Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
Correspondence
Andrea Caria, Dipartimento di Psicologia e Scienze Cognitive, Università degli Studi di Trento, Corso Bettini, 31, Rovereto, Trento 38068, Italy.
Email: [email protected]
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorAlessandro Grecucci
Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Andrea Caria
Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
Correspondence
Andrea Caria, Dipartimento di Psicologia e Scienze Cognitive, Università degli Studi di Trento, Corso Bettini, 31, Rovereto, Trento 38068, Italy.
Email: [email protected]
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorAlessandro Grecucci
Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing
Search for more papers by this authorAbstract
Increasing evidence showed that learned control of metabolic activity in selected brain regions can support emotion regulation. Notably, a number of studies demonstrated that neurofeedback-based regulation of fMRI activity in several emotion-related areas leads to modifications of emotional behavior along with changes of neural activity in local and distributed networks, in both healthy individuals and individuals with emotional disorders. However, the current understanding of the neural mechanisms underlying self-regulation of the emotional brain, as well as their relationship with other emotion regulation strategies, is still limited. In this study, we attempted to delineate neuroanatomical regions mediating real-time fMRI-based emotion regulation by exploring whole brain GM and WM features predictive of self-regulation of anterior insula (AI) activity, a neuromodulation procedure that can successfully support emotional brain regulation in healthy individuals and patients. To this aim, we employed a multivariate kernel ridge regression model to assess brain volumetric features, at regional and network level, predictive of real-time fMRI-based AI regulation. Our results showed that several GM regions including fronto-occipital and medial temporal areas and the basal ganglia as well as WM regions including the fronto-occipital fasciculus, tapetum and fornix significantly predicted learned AI regulation. Remarkably, we observed a substantial contribution of the cerebellum in relation to both the most effective regulation run and average neurofeedback performance. Overall, our findings highlighted specific neurostructural features contributing to individual differences of AI-guided emotion regulation. Notably, such neuroanatomical topography partially overlaps with the neurofunctional network associated with cognitive emotion regulation strategies, suggesting common neural mechanisms.
CONFLICT OF INTEREST
Authors have no financial and non-financial conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
REFERENCES
- Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018
- Baumann, O., & Mattingley, J. B. (2012). Functional topography of primary emotion processing in the human cerebellum. NeuroImage, 61, 805–811. https://doi.org/10.1016/j.neuroimage.2012.03.044
- Berman, B. D., Horovitz, S. G., & Hallett, M. (2013). Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback. Frontiers in Human Neuroscience, 7, 638. https://doi.org/10.3389/fnhum.2013.00638
- Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17, 241–254. https://doi.org/10.1016/j.tics.2013.03.003
- Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews. Neuroscience, 19, 338–350. https://doi.org/10.1038/s41583-018-0002-7
- Bruhl, A. B., Scherpiet, S., Sulzer, J., Stampfli, P., Seifritz, E., & Herwig, U. (2014). Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: A proof-of-concept study. Brain Topography, 27, 138–148. https://doi.org/10.1007/s10548-013-0331-9
- Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990. https://doi.org/10.1093/cercor/bht154
- Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the BOLD fMRI signal. NeuroImage, 154, 128–149. https://doi.org/10.1016/j.neuroimage.2016.12.018
- Caria, A. (2016). Self-regulation of blood oxygenation level dependent response: Primary effect or epiphenomenon? Frontiers in Neuroscience, 10, 117. https://doi.org/10.3389/fnins.2016.00117
- Caria, A. (2020). Mesocorticolimbic interactions mediate fMRI-guided regulation of self-generated affective states. Brain Sciences, 10, 223. https://doi.org/10.3390/brainsci10040223
- Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-time fMRI: A tool for local brain regulation. The Neuroscientist, 18, 487–501. https://doi.org/10.1177/1073858411407205
- Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68, 425–432. https://doi.org/10.1016/j.biopsych.2010.04.020
- Caria, A., Veit, R., Sitaram, R., Lotze, M., Weiskopf, N., Grodd, W., & Birbaumer, N. (2007). Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 35, 1238–1246. https://doi.org/10.1016/j.neuroimage.2007.01.018
- Chu, C., Ni, Y., Tan, G., Saunders, C. J., & Ashburner, J. (2011). Kernel regression for fMRI pattern prediction. NeuroImage, 56, 662–673. https://doi.org/10.1016/j.neuroimage.2010.03.058
- Cohen Kadosh, K., Luo, Q., de Burca, C., Sokunbi, M. O., Feng, J., Linden, D. E. J., & Lau, J. Y. F. (2016). Using real-time fMRI to influence effective connectivity in the developing emotion regulation network. NeuroImage, 125, 616–626. https://doi.org/10.1016/j.neuroimage.2015.09.070
- Cremers, H. R., Wager, T. D., & Yarkoni, T. (2017). The relation between statistical power and inference in fMRI. PLoS One, 12, e0184923. https://doi.org/10.1371/journal.pone.0184923
- Dadomo, H., Salvato, G., Lapomarda, G., Ciftci, Z., Messina, I., & Grecucci, A. (2022). Structural features predict sexual trauma and interpersonal problems in borderline personality disorder but not in controls: A multi-voxel pattern analysis. Frontiers in Human Neuroscience, 16, 773593. https://doi.org/10.3389/fnhum.2022.773593
- Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103, 13848–13853. https://doi.org/10.1073/pnas.0601417103
- Dohmatob, E., Dumas, G., & Bzdok, D. (2020). Dark control: The default mode network as a reinforcement learning agent. Human Brain Mapping, 41, 3318–3341. https://doi.org/10.1002/hbm.25019
- Doucet, G. E., Lee, W. H., & Frangou, S. (2019). Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases. Human Brain Mapping, 40, 4577–4587. https://doi.org/10.1002/hbm.24722
- Emmert, K., Kopel, R., Sulzer, J., Bruhl, A. B., Berman, B. D., Linden, D. E. J., Horovitz, S. G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret, C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C. F., Van De Ville, D., & Haller, S. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124, 806–812. https://doi.org/10.1016/j.neuroimage.2015.09.042
- Etkin, A., Buchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews. Neuroscience, 16, 693–700. https://doi.org/10.1038/nrn4044
- Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21, 1761–1770. https://doi.org/10.1093/cercor/bhq246
- Gaume, A., Vialatte, A., Mora-Sanchez, A., Ramdani, C., & Vialatte, F. B. (2016). A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neuroscience and Biobehavioral Reviews, 68, 891–910. https://doi.org/10.1016/j.neubiorev.2016.06.012
- Grecucci, A., Giorgetta, C., Bonini, N., & Sanfey, A. G. (2013). Reappraising social emotions: The role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation. Frontiers in Human Neuroscience, 7, 523. https://doi.org/10.3389/fnhum.2013.00523
- Grecucci, A., Giorgetta, C., Van't Wout, M., Bonini, N., & Sanfey, A. G. (2013). Reappraising the ultimatum: An fMRI study of emotion regulation and decision making. Cerebral Cortex, 23, 399–410. https://doi.org/10.1093/cercor/bhs028
- Grone, M., Dyck, M., Koush, Y., Bergert, S., Mathiak, K. A., Alawi, E. M., Elliott, M., & Mathiak, K. (2015). Upregulation of the rostral anterior cingulate cortex can alter the perception of emotions: fMRI-based neurofeedback at 3 and 7 T. Brain Topography, 28, 197–207. https://doi.org/10.1007/s10548-014-0384-4
- Gross, J. J. (2014). Handbook of emotion regulation. Guilford Publications.
- Hamilton, J. P., Glover, G. H., Hsu, J. J., Johnson, R. F., & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping, 32, 22–31. https://doi.org/10.1002/hbm.20997
- Haugg, A., Renz, F. M., Nicholson, A. A., Lor, C., Gotzendorfer, S. J., Sladky, R., Skouras, S., McDonald, A., Craddock, C., Hellrung, L., Kirschner, M., Herdener, M., Koush, Y., Papoutsi, M., Keynan, J., Hendler, T., Cohen Kadosh, K., Zich, C., Kohl, S. H., … Steyrl, D. (2021). Predictors of real-time fMRI neurofeedback performance and improvement - a machine learning mega-analysis. NeuroImage, 237, 118207. https://doi.org/10.1016/j.neuroimage.2021.118207
- Haugg, A., Sladky, R., Skouras, S., McDonald, A., Craddock, C., Kirschner, M., Herdener, M., Koush, Y., Papoutsi, M., Keynan, J. N., Hendler, T., Cohen Kadosh, K., Zich, C., MacInnes, J., Adcock, R. A., Dickerson, K., Chen, N. K., Young, K., Bodurka, J., … Scharnowski, F. (2020). Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity? Human Brain Mapping, 41, 3839–3854. https://doi.org/10.1002/hbm.25089
- Heffley, W., & Hull, C. (2019). Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife, 8, e46764. https://doi.org/10.7554/eLife.46764
- Hellrung, L., Dietrich, A., Hollmann, M., Pleger, B., Kalberlah, C., Roggenhofer, E., Villringer, A., & Horstmann, A. (2018). Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation. NeuroImage, 166, 198–208. https://doi.org/10.1016/j.neuroimage.2017.10.031
- Herwig, U., Lutz, J., Scherpiet, S., Scheerer, H., Kohlberg, J., Opialla, S., Preuss, A., Steiger, V. R., Sulzer, J., Weidt, S., Stampfli, P., Rufer, M., Seifritz, E., Jancke, L., & Bruhl, A. B. (2019). Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. NeuroImage, 184, 687–696. https://doi.org/10.1016/j.neuroimage.2018.09.068
- Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., Calabresi, P. A., Pekar, J. J., van Zijl, P. C., & Mori, S. (2008). Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification. NeuroImage, 39, 336–347. https://doi.org/10.1016/j.neuroimage.2007.07.053
- Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9, 304–313. https://doi.org/10.1038/nrn2332
- Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355. https://doi.org/10.1016/j.neuroimage.2013.11.001
- Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., Sun, N., Zuo, X. N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2019). Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cerebral Cortex, 29, 2533–2551. https://doi.org/10.1093/cercor/bhy123
- Kostadinov, D., Beau, M., Blanco-Pozo, M., & Hausser, M. (2019). Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nature Neuroscience, 22, 950–962. https://doi.org/10.1038/s41593-019-0381-8
- Koush, Y., Meskaldji, D. E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E., Van De Ville, D., Vuilleumier, P., & Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based Neurofeedback. Cerebral Cortex, 27, 1193–1202. https://doi.org/10.1093/cercor/bhv311
- LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews. Neuroscience, 7, 54–64. https://doi.org/10.1038/nrn1825
- Larry, N., Yarkoni, M., Lixenberg, A., & Joshua, M. (2019). Cerebellar climbing fibers encode expected reward size. eLife, 8, e46870. https://doi.org/10.7554/eLife.46870
- Lawrence, E. J., Su, L., Barker, G. J., Medford, N., Dalton, J., Williams, S. C., Birbaumer, N., Veit, R., Ranganatha, S., Bodurka, J., Brammer, M., Giampietro, V., & David, A. S. (2013). Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback. NeuroImage, 88C, 113–124. https://doi.org/10.1016/j.neuroimage.2013.10.069
- Lee, S., Ruiz, S., Caria, A., Veit, R., Birbaumer, N., & Sitaram, R. (2011). Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation: A multivariate investigation. Neurorehabilitation and Neural Repair, 25, 259–267. https://doi.org/10.1177/1545968310385128
- Linden, D. E., Habes, I., Johnston, S. J., Linden, S., Tatineni, R., Subramanian, L., Sorger, B., Healy, D., & Goebel, R. (2012). Real-time self-regulation of emotion networks in patients with depression. PLoS One, 7, e38115. https://doi.org/10.1371/journal.pone.0038115
- Linhartova, P., Latalova, A., Kosa, B., Kasparek, T., Schmahl, C., & Paret, C. (2019). fMRI neurofeedback in emotion regulation: A literature review. NeuroImage, 193, 75–92. https://doi.org/10.1016/j.neuroimage.2019.03.011
- Lubianiker, N., Goldway, N., Fruchtman-Steinbok, T., Paret, C., Keynan, J. N., Singer, N., Cohen, A., Kadosh, K. C., Linden, D. E. J., & Hendler, T. (2019). Process-based framework for precise neuromodulation. Nature Human Behaviour, 3, 436–445. https://doi.org/10.1038/s41562-019-0573-y
- Marxen, M., Jacob, M. J., Muller, D. K., Posse, S., Ackley, E., Hellrung, L., Riedel, P., Bender, S., Epple, R., & Smolka, M. N. (2016). Amygdala regulation following fMRI-Neurofeedback without instructed strategies. Frontiers in Human Neuroscience, 10, 183. https://doi.org/10.3389/fnhum.2016.00183
- Mehler, D. M. A., Sokunbi, M. O., Habes, I., Barawi, K., Subramanian, L., Range, M., Evans, J., Hood, K., Luhrs, M., Keedwell, P., Goebel, R., & Linden, D. E. J. (2018). Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology, 43, 2578–2585. https://doi.org/10.1038/s41386-018-0126-5
- Messina, I., Grecucci, A., & Viviani, R. (2021). Neurobiological models of emotion regulation: A meta-analysis of neuroimaging studies of acceptance as an emotion regulation strategy. Social Cognitive and Affective Neuroscience, 16, 257–267. https://doi.org/10.1093/scan/nsab007
- Min, J., Nashiro, K., Yoo, H. J., Cho, C., Nasseri, P., Bachman, S. L., Porat, S., Thayer, J. F., Chang, C., Lee, T. H., & Mather, M. (2022). Emotion downregulation targets interoceptive brain regions while emotion upregulation targets other affective brain regions. The Journal of Neuroscience, 42, 2973–2985. https://doi.org/10.1523/JNEUROSCI.1865-21.2022
- Misaki, M., Phillips, R., Zotev, V., Wong, C. K., Wurfel, B. E., Krueger, F., Feldner, M., & Bodurka, J. (2018). Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: A connectome-wide investigation. NeuroImage: Clinical, 20, 543–555. https://doi.org/10.1016/j.nicl.2018.08.025
- Morgenroth, E., Saviola, F., Gilleen, J., Allen, B., Luhrs, M., Eysenck, M. W., & Allen, P. (2020). Using connectivity-based real-time fMRI neurofeedback to modulate attentional and resting state networks in people with high trait anxiety. NeuroImage: Clinical, 25, 102191. https://doi.org/10.1016/j.nicl.2020.102191
- Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A. V., Mahmood, A., Woods, R., Toga, A. W., Pike, G. B., Neto, P. R., Evans, A., Zhang, J., Huang, H., Miller, M. I., van Zijl, P., & Mazziotta, J. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage, 40, 570–582. https://doi.org/10.1016/j.neuroimage.2007.12.035
- Mourao-Miranda, J., Hardoon, D. R., Hahn, T., Marquand, A. F., Williams, S. C., Shawe-Taylor, J., & Brammer, M. (2011). Patient classification as an outlier detection problem: An application of the one-class support vector machine. NeuroImage, 58, 793–804. https://doi.org/10.1016/j.neuroimage.2011.06.042
- Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24. https://doi.org/10.1111/j.1749-6632.2012.06751.x
- Orsenigo, C., & Vercellis, C. (2012). Kernel ridge regression for out-of-sample mapping in supervised manifold learning. Expert Systems with Applications, 39, 7757–7762. https://doi.org/10.1016/j.eswa.2012.01.060
- Papageorgiou, T. D., Lisinski, J. M., McHenry, M. A., White, J. P., & LaConte, S. M. (2013). Brain-computer interfaces increase whole-brain signal to noise. Proceedings of the National Academy of Sciences of the United States of America, 110, 13630–13635. https://doi.org/10.1073/pnas.1210738110
- Paret, C., Goldway, N., Zich, C., Keynan, J. N., Hendler, T., Linden, D., & Cohen Kadosh, K. (2019). Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. NeuroImage, 202, 116107. https://doi.org/10.1016/j.neuroimage.2019.116107
- Paret, C., & Hendler, T. (2020). Live from the “regulating brain”: Harnessing the brain to change emotion. Emotion, 20, 126–131. https://doi.org/10.1037/emo0000674
- Paret, C., Kluetsch, R., Ruf, M., Demirakca, T., Hoesterey, S., Ende, G., & Schmahl, C. (2014). Down-regulation of amygdala activation with real-time fMRI neurofeedback in a healthy female sample. Frontiers in Behavioral Neuroscience, 8, 299. https://doi.org/10.3389/fnbeh.2014.00299
- Paret, C., Kluetsch, R., Zaehringer, J., Ruf, M., Demirakca, T., Bohus, M., Ende, G., & Schmahl, C. (2016). Alterations of amygdala-prefrontal connectivity with real-time fMRI neurofeedback in BPD patients. Social Cognitive and Affective Neuroscience, 11, 952–960. https://doi.org/10.1093/scan/nsw016
- Paret, C., Ruf, M., Gerchen, M. F., Kluetsch, R., Demirakca, T., Jungkunz, M., Bertsch, K., Schmahl, C., & Ende, G. (2016). fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity. NeuroImage, 125, 182–188. https://doi.org/10.1016/j.neuroimage.2015.10.027
- Paret, C., Zaehringer, J., Ruf, M., Ende, G., & Schmahl, C. (2019). The orbitofrontal cortex processes neurofeedback failure signals. Behavioural Brain Research, 369, 111938. https://doi.org/10.1016/j.bbr.2019.111938
- Paret, C., Zahringer, J., Ruf, M., Gerchen, M. F., Mall, S., Hendler, T., Schmahl, C., & Ende, G. (2018). Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain. Human Brain Mapping, 39, 3018–3031. https://doi.org/10.1002/hbm.24057
- Pierce, J. E., & Peron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15, 599–613. https://doi.org/10.1093/scan/nsaa076
- Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2, 67–70. https://doi.org/10.1093/scan/nsm006
- Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. Proceedings of the National Academy of Sciences of the United States of America, 113, E2413–E2420. https://doi.org/10.1073/pnas.1516857113
- Ramot, M., Kimmich, S., Gonzalez-Castillo, J., Roopchansingh, V., Popal, H., White, E., Gotts, S. J., & Martin, A. (2017). Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback. eLife, 6, e28974. https://doi.org/10.7554/eLife.28974
- Ritchey, M., Wang, S. F., Yonelinas, A. P., & Ranganath, C. (2019). Dissociable medial temporal pathways for encoding emotional item and context information. Neuropsychologia, 124, 66–78. https://doi.org/10.1016/j.neuropsychologia.2018.12.015
- Ruiz, S., Lee, S., Soekadar, S. R., Caria, A., Veit, R., Kircher, T., Birbaumer, N., & Sitaram, R. (2013). Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Human Brain Mapping, 34, 200–212. https://doi.org/10.1002/hbm.21427
- Scheinost, D., Stoica, T., Saksa, J., Papademetris, X., Constable, R. T., Pittenger, C., & Hampson, M. (2013). Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Translational Psychiatry, 3, e250. https://doi.org/10.1038/tp.2013.24
- Schrouff, J., Monteiro, J. M., Portugal, L., Rosa, M. J., Phillips, C., & Mourao-Miranda, J. (2018). Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models. Neuroinformatics, 16, 117–143. https://doi.org/10.1007/s12021-017-9347-8
- Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., & Mourao-Miranda, J. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11, 319–337. https://doi.org/10.1007/s12021-013-9178-1
- Schumacher, R., Halai, A. D., & Lambon Ralph, M. A. (2019). Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain, 142, 3202–3216. https://doi.org/10.1093/brain/awz258
- Schutter, D. J., & van Honk, J. (2009). The cerebellum in emotion regulation: A repetitive transcranial magnetic stimulation study. Cerebellum, 8, 28–34. https://doi.org/10.1007/s12311-008-0056-6
- Sendhilnathan, N., Semework, M., Goldberg, M. E., & Ipata, A. E. (2020). Neural correlates of reinforcement learning in mid-lateral cerebellum. Neuron, 106, 188–198.e5. https://doi.org/10.1016/j.neuron.2019.12.032
- Shibata, K., Lisi, G., Cortese, A., Watanabe, T., Sasaki, Y., & Kawato, M. (2019). Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. NeuroImage, 188, 539–556. https://doi.org/10.1016/j.neuroimage.2018.12.022
- Shibata, K., Watanabe, T., Kawato, M., & Sasaki, Y. (2016). Differential activation patterns in the same brain region led to opposite emotional states. PLoS Biology, 14, e1002546. https://doi.org/10.1371/journal.pbio.1002546
- Sitaram, R., Caria, A., Veit, R., Gaber, T., Ruiz, S., & Birbaumer, N. (2014). Volitional control of the anterior insula in criminal psychopaths using real-time fMRI neurofeedback: A pilot study. Frontiers in Behavioral Neuroscience, 8, 344.
- Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews. Neuroscience, 18, 86–100. https://doi.org/10.1038/nrn.2016.164
- Skottnik, L., Sorger, B., Kamp, T., Linden, D., & Goebel, R. (2019). Success and failure of controlling the real-time functional magnetic resonance imaging neurofeedback signal are reflected in the striatum. Brain and Behavior: A Cognitive Neuroscience Perspective, 9, e01240. https://doi.org/10.1002/brb3.1240
- Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106, 13040–13045. https://doi.org/10.1073/pnas.0905267106
- Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21, 313–332. https://doi.org/10.1016/j.tics.2017.02.005
- Spreng, R. N., & Grady, C. L. (2010). Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. Journal of Cognitive Neuroscience, 22, 1112–1123. https://doi.org/10.1162/jocn.2009.21282
- Stelzer, J., Lohmann, G., Mueller, K., Buschmann, T., & Turner, R. (2014). Deficient approaches to human neuroimaging. Frontiers in Human Neuroscience, 8, 462. https://doi.org/10.3389/fnhum.2014.00462
- Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? The Behavioral and Brain Sciences, 30, 299–313; discussion 313–351. https://doi.org/10.1017/S0140525X07001975
- Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., Luft, A., & Gassert, R. (2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain. NeuroImage, 83, 817–825. https://doi.org/10.1016/j.neuroimage.2013.05.115
- Swain, R. A., Kerr, A. L., & Thompson, R. F. (2011). The cerebellum: A neural system for the study of reinforcement learning. Frontiers in Behavioral Neuroscience, 5, 8. https://doi.org/10.3389/fnbeh.2011.00008
- Taschereau-Dumouchel, V., Cortese, A., Chiba, T., Knotts, J. D., Kawato, M., & Lau, H. (2018). Towards an unconscious neural reinforcement intervention for common fears. Proceedings of the National Academy of Sciences of the United States of America, 115, 3470–3475. https://doi.org/10.1073/pnas.1721572115
- Thibault, R. T., MacPherson, A., Lifshitz, M., Roth, R. R., & Raz, A. (2018). Neurofeedback with fMRI: A critical systematic review. NeuroImage, 172, 786–807. https://doi.org/10.1016/j.neuroimage.2017.12.071
- Togo, H., Rokicki, J., Yoshinaga, K., Hisatsune, T., Matsuda, H., Haga, N., & Hanakawa, T. (2017). Effects of field-map distortion correction on resting state functional connectivity MRI. Frontiers in Neuroscience, 11, 656. https://doi.org/10.3389/fnins.2017.00656
- Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289. https://doi.org/10.1006/nimg.2001.0978
- Van Overwalle, F., Baetens, K., Marien, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies. NeuroImage, 86, 554–572. https://doi.org/10.1016/j.neuroimage.2013.09.033
- Veit, R., Singh, V., Sitaram, R., Caria, A., Rauss, K., & Birbaumer, N. (2012). Using real-time fMRI to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Social Cognitive and Affective Neuroscience, 7, 623–634. https://doi.org/10.1093/scan/nsr061
- Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J., & Luo, L. (2017). Cerebellar granule cells encode the expectation of reward. Nature, 544, 96–100. https://doi.org/10.1038/nature21726
- Watanabe, T., Sasaki, Y., Shibata, K., & Kawato, M. (2017). Advances in fMRI real-time Neurofeedback. Trends in Cognitive Sciences, 21, 997–1010. https://doi.org/10.1016/j.tics.2017.09.010
- Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time-series revisited--again. NeuroImage, 2, 173–181. https://doi.org/10.1006/nimg.1995.1023
- Yang, D., Pelphrey, K. A., Sukhodolsky, D. G., Crowley, M. J., Dayan, E., Dvornek, N. C., Venkataraman, A., Duncan, J., Staib, L., & Ventola, P. (2016). Brain responses to biological motion predict treatment outcome in young children with autism. Translational Psychiatry, 6, e948. https://doi.org/10.1038/tp.2016.213
- Yao, S., Becker, B., Geng, Y., Zhao, Z., Xu, X., Zhao, W., Ren, P., & Kendrick, K. M. (2016). Voluntary control of anterior insula and its functional connections is feedback-independent and increases pain empathy. NeuroImage, 130, 230–240. https://doi.org/10.1016/j.neuroimage.2016.02.035
- Young, K. D., Misaki, M., Harmer, C. J., Victor, T., Zotev, V., Phillips, R., Siegle, G. J., Drevets, W. C., & Bodurka, J. (2017). Real-time functional magnetic resonance imaging amygdala neurofeedback changes positive information processing in major depressive disorder. Biological Psychiatry, 82, 578–586. https://doi.org/10.1016/j.biopsych.2017.03.013
- Young, K. D., Siegle, G. J., Misaki, M., Zotev, V., Phillips, R., Drevets, W. C., & Bodurka, J. (2018). Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder. NeuroImage: Clinical, 17, 691–703. https://doi.org/10.1016/j.nicl.2017.12.004
- Young, K. D., Siegle, G. J., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., & Bodurka, J. (2017). Randomized clinical trial of real-time fMRI amygdala Neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall. The American Journal of Psychiatry, 174, 748–755. https://doi.org/10.1176/appi.ajp.2017.16060637
- Young, K. D., Zotev, V., Phillips, R., Misaki, M., Drevets, W. C., & Bodurka, J. (2018). Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review. Psychiatry and Clinical Neurosciences, 72, 466–481. https://doi.org/10.1111/pcn.12665
- Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., & Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain Connectivity, 4, 690–701. https://doi.org/10.1089/brain.2014.0262
- Zhao, Z., Yao, S., Zweerings, J., Zhou, X., Zhou, F., Kendrick, K. M., Chen, H., Mathiak, K., & Becker, B. (2021). Putamen volume predicts real-time fMRI neurofeedback learning success across paradigms and neurofeedback target regions. Human Brain Mapping, 42, 1879–1887. https://doi.org/10.1002/hbm.25336
- Zilverstand, A., Sorger, B., Sarkheil, P., & Goebel, R. (2015). fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Frontiers in Behavioral Neuroscience, 9, 148. https://doi.org/10.3389/fnbeh.2015.00148
- Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P., Drevets, W. C., & Bodurka, J. (2011). Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS One, 6, e24522. https://doi.org/10.1371/journal.pone.0024522
- Zotev, V., Phillips, R., Misaki, M., Wong, C. K., Wurfel, B. E., Krueger, F., Feldner, M., & Bodurka, J. (2018). Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG in veterans with combat-related PTSD. NeuroImage: Clinical, 19, 106–121. https://doi.org/10.1016/j.nicl.2018.04.010
- Zotev, V., Yuan, H., Misaki, M., Phillips, R., Young, K. D., Feldner, M. T., & Bodurka, J. (2016). Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. NeuroImage: Clinical, 11, 224–238. https://doi.org/10.1016/j.nicl.2016.02.003
- Zweerings, J., Pflieger, E. M., Mathiak, K. A., Zvyagintsev, M., Kacela, A., Flatten, G., & Mathiak, K. (2018). Impaired voluntary control in PTSD: Probing self-regulation of the ACC with real-time fMRI. Frontiers in Psychiatry, 9, 219. https://doi.org/10.3389/fpsyt.2018.00219