Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex
Corresponding Author
Martin E. Maier
Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
Correspondence Martin E. Maier, Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstraße 25, 85072 Eichstätt, Germany. Email: [email protected]Search for more papers by this authorMarco Steinhauser
Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
Search for more papers by this authorCorresponding Author
Martin E. Maier
Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
Correspondence Martin E. Maier, Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstraße 25, 85072 Eichstätt, Germany. Email: [email protected]Search for more papers by this authorMarco Steinhauser
Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany
Search for more papers by this authorFunding information: Deutsche Forschungsgemeinschaft grant (MA 4864/3-1) (to M. E. M.)
Abstract
Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors—an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms.
REFERENCES
- Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338–1344. doi:10.1038/nn.2921
- Bell, A., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7584893
- Bonini, F., Burle, B., Liégeois-Chauvel, C., Régis, J., Chauvel, P., & Vidal, F. (2014). Action monitoring and medial frontal cortex: Leading role of supplementary motor area. Science, 343, 888–891. doi:10.1126/science.1247412
- Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. doi:10.1037//0033-295X.I08.3.624
- Cavanagh, J. F., & Allen, J. J. B. (2008). Multiple aspects of the stress response under social evaluative threat: An electrophysiological investigation. Psychoneuroendocrinology, 33, 41–53. doi:10.1016/j.psyneuen.2007.09.007
- Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009
- Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, NeuroImage, 34, 1443–1449. doi:10.1016/j.neuroimage.2006.11.004
- Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.
- Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1990). Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In C. H. M. Brunia, A. W. K. Gaillard, & A. Kok (Eds.), Psychophysiological brain research (pp. 192–195). Tilburg, Netherlands: University Press. Retrieved from papers2://publication/uuid/E63BFDF8-E34C-46F3–8ECB-BF8F6FE4A5B1
- Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.
- Foti, D., Kotov, R., Bromet, E., & Hajcak, G. (2012). Beyond the broken error-related negativity: Functional and diagnostic correlates of error processing in psychosis. Biological Psychiatry, 71, 864–872. doi:10.1016/j.biopsych.2012.01.007
- Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error-detection and compensation. Psychological Science, 4, 385–390. doi:10.1111/j.1467-9280.1993.6tb00586.x
- Gibbons, H., Fritzsche, A. S., Bienert, S., Armbrecht, A. S., & Stahl, J. (2011). Percept-based and object-based error processing: An experimental dissociation of error-related negativity and error positivity. Clinical Neurophysiology, 122, 299–310. doi:10.1016/j.clinph.2010.06.031
- Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42, 151–160. doi:10.1111/j.1469-8986.2005.00270.x
- Hewig, J., Coles, M. G. H., Trippe, R. H., Hecht, H., & Miltner, W. H. R. (2011). Dissociation of Pe and ERN/Ne in the conscious recognition of an error. Psychophysiology, 48, 1390–1396. doi:10.1111/j.1469-8986.2011.01209.x
- Holmes, J., & Pizzagalli, A. (2008). Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Archives of General Psychiatry, 65, 179–188.
- Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi:10.1037//0033-295X.109.4.679
- Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, D., & Brem, S. (2015). Conflict monitoring and error processing: New insights from simultaneous EEG-fMRI. NeuroImage, 105, 395–407. doi:10.1016/j.neuroimage.2014.10.028
- Jentzsch, I., & Dudschig, C. (2009). Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing. Quarterly Journal of Experimental Psychology, 62, 209–218. doi:10.1080/17470210802240655
- Kelley, T. A., & Lavie, N. (2011). Working memory load modulates distractor competition in primary visual cortex. Cerebral Cortex, 21, 659–665. doi:10.1093/cercor/bhq139
- Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75–82. doi:10.1016/j.tics.2004.12.004
- Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology. General, 133, 339–354. doi:10.1037/0096-3445.133.3.339
- Maier, M., Steinhauser, M., & Hübner, R. (2008). Is the error-related negativity amplitude related to error detectability? Evidence from effects of different error types. Journal of Cognitive Neuroscience, 20, 2263–2273. doi:10.1162/jocn.2008.20159
- Maier, M. E., Di Pellegrino, G., & Steinhauser, M. (2012). Enhanced error-related negativity on flanker errors: Error expectancy or error significance? Psychophysiology, 49, 899–908. doi:10.1111/j.1469-8986.2012.01373.x
- Maier, M. E., & Steinhauser, M. (2013). Updating expected action outcome in the medial frontal cortex involves an evaluation of error type. Journal of Neuroscience, 33, 15705–15709. doi:10.1523/JNEUROSCI.2785-13.2013
- Maier, M. E., & Steinhauser, M. (2016). Error significance but not error expectancy predicts error-related negativities for different error types. Behavioural Brain Research, 297, 259–267. doi:10.1016/j.bbr.2015.10.031
- Maier, M. E., Yeung, N., & Steinhauser, M. (2011). Error-related brain activity and adjustments of selective attention following errors. NeuroImage, 56, 2339–2347. doi:10.1016/j.neuroimage.2011.03.083
- Makeig, S., J. Bell, A., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems, 8, 145–151.
- Moser, J. S., Moran, T. P., Schroder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring: A meta-analysis and conceptual framework. Frontiers in Human Neuroscience, 7, 466. doi:10.3389/fnhum.2013.00466
- Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing. Journal of Psychophysiology, 19, 319–329. doi:10.1027/0269-8803.19.4.319
- Pashler, H., & Johnston, J. C. (1998). Attentional limitations in dual-task performance. In H. Pashler (Ed.), Attention (pp. 155–189). Hove, England: Psychology Press.
- Pratt, N., Willoughby, A., & Swick, D. (2011). Effects of working memory load on visual selective attention: Behavioral and electrophysiological evidence. Frontiers in Human Neuroscience, 5, 1–9. doi:10.3389/fnhum.2011.00057
- Rabbitt, P. (2002). Consciousness is slower than you think. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 55, 1081–1092. doi:10.1080/0272498024400008
- Ridderinkhof, K. R., Ullsperger, M., Crone, E., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447. doi:10.1126/science.1100301
- Ruchkin, D. S., Johnson, J. R., Canoune, H., & Ritter, W. (1990). Short-term memory storage and retention: An event-related brain potential study. Electroencephalography and Clinical Neurophysiology, 76, 419–439.
- Ruchkin, D. S., Johnson, J. R., Grafman, J., Canoune, H., & Ritter, W. (1992). Distinctions and similarities among working memory processes: An event-related potential study. Cognitive Brain Research, 1, 53–66.
- Scheffers, M. K., & Coles, M. G. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology. Human Perception and Performance, 26, 141–151. doi:10.1037//0096-1523.26.1.141
- Soutschek, A., Strobach, T., & Schubert, T. (2013). Working memory demands modulate cognitive control in the Stroop paradigm. Psychological Research, 77, 333–347. doi:10.1007/s00426-012-0429-9
- Steinhauser, M., Ernst, B., & Ibald, K. W. (2017). Isolating component processes of post-error slowing with the PRP paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 653–659. doi:10.1037/xlm0000329
- Viola, F. C., Thorne, J., Edmonds, B., Schneider, T., Eichele, T., & Debener, S. (2009). Semi-automatic identification of independent components representing EEG artifact. Clinical Neurophysiology, 120, 868–877. doi:10.1016/j.clinph.2009.01.015
- Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimental design. London, England: McGraw-Hill.
- Yeung, N., Botvinick, M., & Cohen, J. (2004). The neural basis of error detection: Conflict monitoring and the error related negativity. Psychological Review, 11, 931–959. doi:10.1037/0033-295X.111.4.931