Investigating the age-related “anterior shift” in the scalp distribution of the P3b component using principal component analysis
Brittany R. Alperin
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Search for more papers by this authorKatherine K. Mott
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Search for more papers by this authorDorene M. Rentz
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Search for more papers by this authorPhillip J. Holcomb
Department of Psychology, Tufts University, Medford, Massachusetts, USA
Search for more papers by this authorCorresponding Author
Kirk R. Daffner
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Address correspondence to: Kirk R. Daffner, MD, FAAN, Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA. E-mail: [email protected]Search for more papers by this authorBrittany R. Alperin
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Search for more papers by this authorKatherine K. Mott
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Search for more papers by this authorDorene M. Rentz
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Search for more papers by this authorPhillip J. Holcomb
Department of Psychology, Tufts University, Medford, Massachusetts, USA
Search for more papers by this authorCorresponding Author
Kirk R. Daffner
Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham, Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Address correspondence to: Kirk R. Daffner, MD, FAAN, Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA. E-mail: [email protected]Search for more papers by this authorAbstract
An age-related “anterior shift” in the distribution of the P3b is often reported. Temporospatial principal component analysis (PCA) was used to investigate the basis of this observation. ERPs were measured in young and old adults during a visual oddball task. PCA revealed two spatially distinct factors in both age groups, identified as the posterior P3b and anterior P3a. Young subjects generated a smaller P3a than P3b, while old subjects generated a P3a that did not differ in amplitude from their P3b. Rather than having a more anteriorly distributed P3b, old subjects produced a large, temporally overlapping P3a. The pattern of the age-related “anterior shift” in the P3 was similar for target and standard stimuli. The increase in the P3a in elderly adults may not represent a failure to habituate the novelty response, but may reflect greater reliance on executive control operations (P3a) to carry out the categorization/updating process (P3b).
References
- Alperin, B. R., Haring, A. E., Zhuravleva, T. Y., Holcomb, P. J., Rentz, D. M., & Daffner, K. R. (2013). The dissociation between early and late selection in older adults. Journal of Cognitive Neuroscience, 25, 2189–2206. doi: 10.1162/jocn_a_00456
- American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders ( 4th ed.). Washington, DC: American Psychological Association.
- Anderer, P., Pascual-Marqui, R. D., Semlitsch, H. V., & Saletu, B. (1998). Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA). Electroencephalography and Clinical Neurophysiology, 108, 160–174.
- Barcelo, F., Escera, C., Corral, M. J., & Perianez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18, 1734–1748. doi: 10.1162/jocn.2006.18.10.1734
- Barcelo, F., Perianez, J. A., & Knight, R. T. (2002). Think differently: A brain orienting response to task novelty. NeuroReport, 13, 1887–1892.
- Beck, A. T., & Steer, R. A. (1987). Beck Depression Inventory: Manual. San Antonio, TX: The Psychological Corporation.
- Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., … Reed, B. R. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746–763.
- Chan, R. C., Shum, D., Toulopoulou, T., & Chen, E. Y. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of ClinicalNeuropsychology, 23, 201–216. doi: 10.1016/j.acn.2007.08.010
- Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalography and Clinical Neurophysiology, 39, 131–143.
- Daffner, K. R., Chong, H., Riis, J., Rentz, D. M., Wolk, D. A., Budson, A. E., & Holcomb, P. J. (2007). Cognitive status impacts age-related changes in attention to novel and target events in normal adults. Neuropsychology, 21, 291–300. doi: 10.1037/0894-4105.21.3.291
- Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., & Holcomb, P. J. (2011). Mechanisms underlying age- and performance-related differences in working memory. Journal of Cognitive Neuroscience, 23, 1298–1314. doi: 10.1162/jocn.2010.21540
- Daffner, K. R., Mesulam, M. M., Scinto, L. F., Acar, D., Calvo, V., Faust, R., … Holcomb, P. (2000). The central role of the prefrontal cortex in directing attention to novel events. Brain, 123, 927–939.
- Daffner, K. R., Mesulam, M. M., Scinto, L. F., Cohen, L. G., Kennedy, B. P., West, W. C., & Holcomb, P. J. (1998). Regulation of attention to novel stimuli by frontal lobes: An event-related potential study. NeuroReport, 9, 787–791.
- Daffner, K. R., Ryan, K. K., Williams, D. M., Budson, A. E., Rentz, D. M., Scinto, L. F. M., & Holcomb, P. J. (2005). Age-related differences in novelty and target processing among cognitively high performing adults. Neurobiology of Aging, 26, 1123–1295.
- Daffner, K. R., Ryan, K. K., Williams, D. M., Budson, A. E., Rentz, D. M., Wolk, D. A., & Holcomb, P. J. (2006a). Age-related differences in attention to novelty among cognitively high performing adults. Biological Psychology, 72, 67–77.
- Daffner, K. R., Ryan, K. K., Williams, D. M., Budson, A. E., Rentz, D. M., Wolk, D. A., & Holcomb, P. J. (2006b). Increased responsiveness to novelty is associated with successful cognitive aging. Journal of Cognitive Neuroscience, 18, 1759–1773.
- Daffner, K. R., Scinto, L. F., Weitzman, A. M., Faust, R., Rentz, D. M., Budson, A. E., & Holcomb, P. J. (2003). Frontal and parietal components of a cerebral network mediating voluntary attention to novel events. Journal of Cognitive Neuroscience, 15, 294–313.
- Daffner, K. R., Sun, X., Tarbi, E. C., Rentz, D. M., Holcomb, P. J., & Riis, J. L. (2011). Does compensatory neural activity survive old-old age? NeuroImage, 54, 427–438. doi: 10.1016/j.neuroimage.2010.08.006
- Daselaar, S. M., & Cabeza, R. (2005). Age-related changes in hemispheric organization. In R. Cabeza, L. Nyberg, & D. Park (Eds.), Cognitive neuroscience of aging (pp. 325–353). New York, NY: Oxford University Press.
- de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806. doi: 10.1126/science.1056496
- Delis, D., Kaplan, E., & Kramer, J. (2001). Delis Kaplan executive function system. San Antonio, TX: Psychological Cooperation.
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009
- Dien, J. (1998). Addressing misallocation of variance in principal components analysis of event-related potentials. Brain Topography, 11, 43–55.
- Dien, J. (2010). Evaluating two-step PCA of ERP data with geomin, infomax, oblimin, promax, and varimax rotations. Psychophysiology, 47, 170–183.
- Dien, J. (2012). Applying principal components analysis to event-related potentials: A tutorial. Developmental Neuropsychology, 37, 497–517. doi: 10.1080/87565641.2012.697503
- Dien, J., Spencer, K. M., & Donchin, E. (2003). Localization of the event-related potential novelty response as defined by principal components analysis. Brain Research: Cognitive Brain Research, 17, 637–650.
- Dien, J., Spencer, K. M., & Donchin, E. (2004). Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology, 41, 665–678.
- Donchin, E. (1981). Presidential address, 1980. Surprise! … Surprise? Psychophysiology, 18, 493–513.
- Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374.
-
Donchin, E., Ritter, W., & McCallum, W. C. (1978). Cognitive psychophysiology: The endogenous components of the ERP. In E. Callaway, P. Tueting, & S. Kowslow (Eds.), Event-related brain potentials in man (pp. 349–411). New York, NY: Academic Press Inc.
10.1016/B978-0-12-155150-6.50019-5 Google Scholar
- Fabiani, M., & Friedman, D. (1995). Changes in brain activity patterns in aging: The novelty oddball. Psychophysiology, 32, 579–594.
- Fabiani, M., Friedman, D., & Cheng, J. C. (1998). Individual differences in P3 scalp distribution in older adults, and their relationship to frontal lobe function. Psychophysiology, 35, 698–708.
- Fjell, A. M., & Walhovd, K. B. (2001). P300 and neuropsychological tests as measures of aging: Scalp topography and cognitive changes. Brain Topography, 14, 25–40.
- Fjell, A. M., & Walhovd, K. B. (2005). High versus average cognitive function: Implications for the age-sensitivity of P3. Neurobiology of Aging, 26, 1305–1306.
- Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.
- Friedman, D. (2003). Cognition and aging: A highly selective overview of event-related potential (ERP) data. Journal of Clinical and Experimental Neuropsychology, 25, 702–720. doi: 10.1076/jcen.25.5.702.14578
- Friedman, D., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373.
- Friedman, D., Kazmerski, V., & Fabiani, M. (1997). An overview of age-related changes in the scalp distribution of P3b. Electroencephalography and Clinical Neurophysiology, 104, 498–513.
- Friedman, D., Kazmerski, V. A., & Cycowicz, Y. M. (1998). Effects of aging on the novelty P3 during attend and ignore oddball tasks. Psychophysiology, 35, 508–520.
- Friedman, D., Simpson, G., & Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30, 383–396.
- Frodl, T., Juckel, G., Gallinat, J., Bottlender, R., Riedel, M., Preuss, U., … Hegerl, U. (2000). Dipole localization of P300 and normal aging. Brain Topography, 13, 3–9.
- Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D'Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences of the United States of America, 105, 13122–13126. doi: 10.1073/pnas.0806074105
- Goldstein, A., Spencer, K. M., & Donchin, E. (2002). The influence of stimulus deviance and novelty on the P300 and novelty P3. Psychophysiology, 39, 781–790.
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.
- Ivnik, R. J., Malec, J. F., Smith, G. E., Tangalos, E. G., & Petersen, R. C. (1996). Neuropsychological tests' norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, Stroop, TMT, and JLO. The Clinical Neuropsychologist, 10, 262–278.
- Knight, R. T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurology, 15, 3–13.
- Kok, A. (2000). Age-related changes in involuntary and voluntary attention as reflected in components of the event-related potential (ERP). Biological Psychology, 54, 107–143.
- Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.
- Li, L., Gratton, C., Fabiani, M., & Knight, R. T. (2013). Age-related frontoparietal changes during the control of bottom-up and top-down attention: An ERP study. Neurobiology of Aging, 34, 477–488. doi: 10.1016/j.neurobiolaging.2012.02.025
- Lorenzo-Lopez, L., Amenedo, E., Pazo-Alvarez, P., & Cadaveira, F. (2007). Visual target processing in high- and low-performing older subjects indexed by P3 component. Neurophysiologie Clinique, 37, 53–61. doi: 10.1016/j.neucli.2007.01.008
- Mocks, J. (1986). The influence of latency jitter in principal component analysis of event-related potentials. Psychophysiology, 23, 480–484.
- O'Connell, R. G., Balsters, J. H., Kilcullen, S. M., Campbell, W., Bokde, A. W., Lai, R., … Robertson, I. H. (2012). A simultaneous ERP/fMRI investigation of the P300 aging effect. Neurobiology of Aging, 33, 2448–2461. doi: 10.1016/j.neurobiolaging.2011.12.021
- Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196. doi: 10.1146/annurev.psych.59.103006.093656
- Pfefferbaum, A., Ford, J. M., Wenegrat, B. G., Roth, W. T., & Kopell, B. S. (1984). Clinical application of the P3 component of event-related potentials. I. Normal aging. Electroencephalography and Clinical Neurophysiology, 59, 85–103.
- Polich, J. (1996). Meta-analysis of P300 normative aging studies. Psychophysiology, 33, 334–353.
- Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019
- Reitan, R., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.
- Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182.
- Richardson, C., Bucks, R. S., & Hogan, A. M. (2011). Effects of aging on habituation to novelty: An ERP study. International Journal of Psychophysiology, 79, 97–105. doi: 10.1016/j.ijpsycho.2010.09.007
- Riis, J. L., Chong, H., Ryan, K. K., Wolk, D. A., Rentz, D. M., Holcomb, P. J., & Daffner, K. R. (2008). Compensatory neural activity distinguishes different patterns of normal cognitive aging. NeuroImage, 39, 441–454. doi: 10.1016/j.neuroimage.2007.08.034
- Rissman, J., Gazzaley, A., & D'Esposito, M. (2009). The effect of non-visual working memory load on top-down modulation of visual processing. Neuropsychologia, 47, 1637–1646. doi: 10.1016/j.neuropsychologia.2009.01.036
- Rugg, M. D., & Morcom, A. M. (2005). The relationship between brain activity, cognitive performance, and aging. In R. Cabeza, L. Nyberg, & D. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 132–154): New York, NY: Oxford University Press.
-
Ryan, J., & Paolo, A. (1992). A screening procedure for estimating premorbid intelligence in the elderly. Clinical Neuropsychologist, 6, 53–62.
10.1080/13854049208404117 Google Scholar
- Simons, R. F., Graham, F. K., Miles, M. A., & Chen, X. (2001). On the relationship of P3a and the novelty-P3. Biological Psychology, 56, 207–218.
- Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Reviews in Neurobiology, 14, 199–224.
- Spencer, K. M., Dien, J., & Donchin, E. (1999). A componential analysis of the ERP elicited by novel events using a dense electrode array. Psychophysiology, 36, 409–414.
- Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38, 343–358.
- Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary ( 2nd ed.). New York, NY: Oxford University Press.
- Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two variables of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38, 387–401.
- Urbach, T. P., & Kutas, M. (2002). The intractability of scaling scalp distributions to infer neuroelectric sources. Psychophysiology, 39, 791–808.
- Verleger, R., Jaskowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to preception. Journal of Psychophysiology, 19, 165–181.
- Wechsler, D. (2008). Wechsler Adult Intelligence Scale ( 4th ed.). San Antonio, TX: Pearson.
- West, R., Schwarb, H., & Johnson, B. N. (2010). The influence of age and individual differences in executive function on stimulus processing in the oddball task. Cortex, 46, 550–563. doi: 10.1016/j.cortex.2009.08.001
- West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.
- Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17, 37–49.
- Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14, 656–661. doi: 10.1038/nn.2773