Modafinil augments oscillatory power in middle frequencies during rule selection
Corresponding Author
Michael J. Minzenberg
Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, California, USA
San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
Address correspondence to: Michael J. Minzenberg, MD, Outpatient Mental Health Service, 116C San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA. E-mail: [email protected]Search for more papers by this authorGlenn C. Gomes
Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, California, USA
Search for more papers by this authorJong H. Yoon
Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
Palo Alto Veterans Affairs Medical Center, Palo Alto, California, USA
Search for more papers by this authorAndrew J. Watrous
Center for Neuroscience, University of California, Davis, Davis, California, USA
Search for more papers by this authorJoy Geng
Center for Neuroscience, University of California, Davis, Davis, California, USA
Search for more papers by this authorAlana J. Firl
Program in Vision Neuroscience, University of California, Berkeley, Berkeley, California, USA
Search for more papers by this authorCameron S. Carter
Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, California, USA
Center for Neuroscience, University of California, Davis, Davis, California, USA
Search for more papers by this authorCorresponding Author
Michael J. Minzenberg
Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, California, USA
San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
Address correspondence to: Michael J. Minzenberg, MD, Outpatient Mental Health Service, 116C San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA. E-mail: [email protected]Search for more papers by this authorGlenn C. Gomes
Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, California, USA
Search for more papers by this authorJong H. Yoon
Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
Palo Alto Veterans Affairs Medical Center, Palo Alto, California, USA
Search for more papers by this authorAndrew J. Watrous
Center for Neuroscience, University of California, Davis, Davis, California, USA
Search for more papers by this authorJoy Geng
Center for Neuroscience, University of California, Davis, Davis, California, USA
Search for more papers by this authorAlana J. Firl
Program in Vision Neuroscience, University of California, Berkeley, Berkeley, California, USA
Search for more papers by this authorCameron S. Carter
Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, California, USA
Center for Neuroscience, University of California, Davis, Davis, California, USA
Search for more papers by this authorAbstract
Control-related cognitive processes are associated with cortical oscillations and modulated by catecholamine neurotransmitters. It remains unclear how catecholamine systems modulate control-related oscillations. We tested modafinil effects on rule-related 4–30 Hz oscillations, with double-blind, placebo-controlled (within-subjects) testing of 22 healthy adults, using EEG during cognitive control task performance. EEG data underwent time-frequency decomposition with Morlet wavelets to determine power of 4–30 Hz oscillations. Modafinil enhanced oscillatory power associated with high-control rule selection in theta, alpha, and beta ranges, with a frontotemporal topography and minimal effects during rule maintenance. Augmentation of catecholamine signaling enhances middle-frequency cortical oscillatory power associated with rule selection, which may subserve diverse subcomponent processes in proactive cognitive control.
References
- Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501–520.
- Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.
- Bacci, A., Huguenard, J. R., & Prince, D. A. (2005). Modulation of neocortical interneurons: Extrinsic influences and exercises in self-control. Trends in Neurosciences, 28, 602–610.
- Banich, M. T., Mackiewicz, K. L., Depue, B. E., Whitmer, A. J., Miller, G. A., & Heller, W. (2009). Cognitive control mechanisms, emotion and memory: A neural perspective with implications for psychopathology. Neuroscience and Biobehavioral Reviews, 33, 613–630.
- Barch, D. M. (2005). The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology, 1, 321–353.
- Barth, A. M., Vizi, E. S., Zelles, T., & Lendvai, B. (2008). Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. Journal of Neurophysiology, 99, 394–401.
- Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129–1159.
- Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P. L., Gioanni, Y., Battaglia, F. P., & Wiener, S. I. (2010). Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron, 66, 921–936.
- Benchenane, K., Tiesinga, P. H., & Battaglia, F. P. (2011). Oscillations in the prefrontal cortex: A gateway to memory and attention. Current Opinion in Neurobiology, 21, 475–485.
- Bergles, D. E., Doze, V. A., Madison, D. V., & Smith, S. J. (1996). Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. Journal of Neuroscience, 16, 572–585.
- Berridge, C. W., & Foote, S. L. (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. Journal of Neuroscience, 11, 3135–3145.
- Berridge, C. W., & Morris, M. F. (2000). Amphetamine-induced activation of forebrain EEG is prevented by noradrenergic beta-receptor blockade in the halothane-anesthetized rat. Psychopharmacology, 148, 307–313.
- Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Brain Research Reviews, 42, 33–84.
- Blair, R. C., & Karniski, W. (1993). An alternative method for significance testing of waveform difference potentials. Psychophysiology, 30, 518–524.
- Bunge, S. A. (2004). How we use rules to select actions: A review of evidence from cognitive neuroscience. Cognitive Affective and Behavioral Neuroscience, 4, 564–579.
- Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron, 76, 838–846.
- Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860–1862.
- Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14, 506–515.
- Carboni, E., Tanda, G. L., Frau, R., & Di Chiara, G. (1990). Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: Evidence that dopamine is taken up in vivo by noradrenergic terminals. Journal of Neurochemistry, 55, 1067–1070.
- Carr, D. B., Andrews, G. D., Glen, W. B., & Lavin, A. (2007). Alpha2-Noradrenergic receptors activation enhances excitability and synaptic integration in rat prefrontal cortex pyramidal neurons via inhibition of HCN currents. Journal of Physiology, 584, 437–450.
- Chapotot, F., Pigeau, R., Canini, F., Bourdon, L., & Buguet, A. (2003). Distinctive effects of modafinil and D-amphetamine on the homeostatic and circadian modulation of the human waking EEG. Psychopharmacology, 166, 127–138.
- Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.
- Doege, K., Bates, A. T., White, T. P., Das, D., Boks, M. P., & Liddle, P. F. (2009). Reduced event-related low frequency EEG activity in schizophrenia during an auditory oddball task. Psychophysiology, 46, 566–577.
- Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15, 561–572.
- Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory [Supplement]. Nature Neuroscience, 3, 1184–1191.
- Durston, S., de Zeeuw, P., & Staal, W. G. (2009). Imaging genetics in ADHD: A focus on cognitive control. Neuroscience and Biobehavioral Reviews, 33, 674–689.
- Edeline, J. M. (2012). Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Frontiers in Behavioral Neuroscience, 6, Article 45, 1–14.
- Engel, A. K., & Fries, P. (2010). Beta-band oscillations—Signalling the status quo? Current Opinion in Neurobiology, 20, 156–165.
- Eschenko, O., Magri, C., Panzeri, S., & Sara, S. J. (2012). Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cerebral Cortex, 22, 426–435.
- Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.
- Freund, T. F. (2003). Interneuron diversity series: Rhythm and mood in perisomatic inhibition. Trends in Neuroscience, 26, 489–495.
- Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bulletin, 34, 944–961.
- Gonzalez-Hernandez, J. A., Cedeno, I., Pita-Alcorta, C., Galan, L., Aubert, E., & Figueredo-Rodriguez, P. (2003). Induced oscillations and the distributed cortical sources during the Wisconsin card sorting test performance in schizophrenic patients: New clues to neural connectivity. International Journal of Psychophysiology, 48, 11–24.
- Gozzi, A., Colavito, V., Seke Etet, P. F., Montanari, D., Fiorini, S., Tambalo, S., … Bentivoglio, M. (2012). Modulation of fronto-cortical activity by modafinil: A functional imaging and FOS study in the rat. Neuropsychopharmacology, 37, 822–837.
- Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience, 111, 815–835.
- Haenschel, C., Bittner, R. A,. Waltz, J., Haertling, F., Wibral, M., Singer, W., … Rodriguez, E. (2009). Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. Journal of Neuroscience, 29, 9481–9489.
- Hajos, M., Hoffmann, W. E., Robinson, D. D., Yu, J. H., & Hajos-Korcsok, E. (2003). Norepinephrine but not serotonin reuptake inhibitors enhance theta and gamma activity of the septo-hippocampal system. Neuropsychopharmacology, 28, 857–864.
- Hurley, L. M., Devilbiss, D. M., & Waterhouse, B. D. (2004). A matter of focus: Monoaminergic modulation of stimulus coding in mammalian sensory networks. Current Opinion in Neurobiology, 14, 488–495.
- Jacobs, J., Kahana, M. J., Ekstrom, A. D., & Fried, I. (2007). Brain oscillations control timing of single-neuron activity in humans. Journal of Neuroscience, 27, 3839–3844.
- James, L. M., Iannone, R., Palcza, J., Renger, J. J., Calder, N., Cerchio, K., … Dijk, D. J. (2011). Effect of a novel histamine subtype-3 receptor inverse agonist and modafinil on EEG power spectra during sleep deprivation and recovery sleep in male volunteers. Psychopharmacology, 215, 643–653.
- Jenkinson, N., & Brown, P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends in Neuroscience, 34, 611–618.
- Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neurosciences, 4, 186.
- Joo, E. Y., Hong, S. B., Kim, H. J., Lim, Y. H., Koo, D. L., Ji, K. H., & Tae, W. S. (2010). The effect of modafinil on cortical excitability in patients with narcolepsy: A randomized, placebo-controlled, crossover study. Sleep Medicine, 11, 862–869.
- Kawaguchi, Y., & Shindou, T. (1998). Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. Journal of Neuroscience, 18, 6963–6976.
- Keren, A. S., Yuval-Greenberg, S., & Deouell, L. Y. (2010). Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression. NeuroImage, 49, 2248–2263.
- Klimesch, W., Freunberger, R., Sauseng, P., & Gruber, W. (2008). A short review of slow phase synchronization and memory: Evidence for control processes in different memory systems? Brain Research, 1235, 31–44.
- Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63–88.
- Kocsis, B., Li, S., & Hajos, M. (2007). Behavior-dependent modulation of hippocampal EEG activity by the selective norepinephrine reuptake inhibitor reboxetine in rats. Hippocampus, 17, 627–633.
- Kroner, S., Krimer, L. S., Lewis, D. A., & Barrionuevo, G. (2007). Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cerebral Cortex, 17, 1020–1032.
- Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subGaussian and superGaussian sources. Neural Computation, 11, 417–441.
- Lestienne, R., Herve-Minvielle, A., Robinson, D., Briois, L., & Sara, S. J. (1997). Slow oscillations as a probe of the dynamics of the locus coeruleus-frontal cortex interaction in anesthetized rats. Journal of Physiology, 91, 273–284.
- Luck, S. J., Woodman, G. E., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4, 432–440.
- Madras, B. K., Xie, Z., Lin, Z., Jassen, A., Panas, H., Lynch, L., … Fischman, A. J. (2006). Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. Journal of Pharmacology and Experimental Therapeutics, 319, 561–569.
- McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R., Koppenhaver, A. M., Greischar, L. L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. NeuroImage, 49, 2416–2432.
- Melcher, T., Falkai, P., & Gruber, O. (2008). Functional brain abnormalities in psychiatric disorders: Neural mechanisms to detect and resolve cognitive conflict and interference. Brain Research Reviews, 59, 96–124.
- Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59–65. doi: 10.1038/35036228
- Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.
- Minzenberg, M. J. (2012). Pharmacotherapy for attention-deficit/hyperactivity disorder: From cells to circuits. Neurotherapeutics, 9, 610–621.
- Minzenberg, M. J., & Carter, C. S. (2008). Modafinil: A review of neurochemical actions and effects on cognition. Neuropsychopharmacology, 33, 1477–1502.
- Minzenberg, M. J., Firl, A. J., Yoon, J. H., Gomes, G. C., Reinking, C., & Carter, C. S. (2010). Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology, 35, 2590–2599.
- Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66, 811–822.
- Minzenberg, M. J., Watrous, A. J., Yoon, J. H., Ursu, S., & Carter, C. S. (2008). Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI. Science, 322, 1700–1702.
- Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta.” Progress in Neurobiology, 86, 156–185.
- Moron, J. A., Brockington, A., Wise, R. A., Rocha, B. A., & Hope, B. T. (2002). Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: Evidence from knock-out mouse lines. Journal of Neuroscience, 22, 389–395.
- Nardone, R., Bergmann, J., Lochner, P., Caleri, F., Kunz, A., Staffen, W., … Golaszewski, S. (2010). Modafinil reverses hypoexcitability of the motor cortex in narcoleptic patients: A TMS study. Sleep Medicine, 11, 870–875.
- Onton, J., & Makeig, S. (2006). Information-based modeling of event-related brain dynamics. Progress in Brain Research, 159, 99–120.
- Palva, S., & Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. Trends in Neuroscience, 30, 150–158.
- Raghavachari, S., Lisman, J. E., Tully, M., Madsen, J. R., Bromfield, E. B., & Kahana, M. J. (2006). Theta oscillations in human cortex during a working-memory task: Evidence for local generators. Journal of Neurophysiology, 95, 1630–1638.
- Robertson, P., Jr., & Hellriegel, E. T. (2003). Clinical pharmacokinetic profile of modafinil. Clinical Pharmacokinetics, 42, 123–137.
- Roopun, A. K., Kramer, M. A., Carracedo, L. M., Kaiser, M., Davies, C. H., Traub, R. D., … Whittington, M. A. (2008). Temporal interactions between cortical rhythms. Frontiers in Neuroscience, 2, 145–154.
- Salinas, E., & Sejnowski, T. J. (2001). Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet. Neuroscientist, 7, 430–440.
- Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34, 1015–1022.
- Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neuroscience, 32, 9–18.
- Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58.
- Snitz, B. E., MacDonald, A., III, Cohen, J. D., Cho, R. Y., Becker, T., & Carter, C. S. (2005). Lateral and medial hypofrontality in first-episode schizophrenia: Functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. American Journal of Psychiatry, 162, 2322–2329.
- Steketee, J. D. (2003). Neurotransmitter systems of the medial prefrontal cortex: Potential role in sensitization to psychostimulants. Brain Research Brain Research Reviews, 41, 203–228.
- Tsujimoto, T., Shimazu, H., & Isomura, Y. (2006). Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. Journal of Neurophysiology, 95, 2987–3000.
- Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155–168.
- Urbano, F. J., Leznik, E., & Llinas, R. R. (2007). Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proceedings of the National Academy of Sciences U S A, 104, 12554–12559.
- Volkow, N. D., Fowler, J. S., Logan, J., Alexoff, D., Zhu, W., Telang, F., … Apelskog-Torres, K. (2009). Effects of modafinil on dopamine and dopamine transporters in the male human brain: Clinical implications. Journal of the American Medical Association, 301, 1148–1154.
- von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313.
- Walling, S. G., Brown, R. A., Milway, J. S., Earle, A. G., & Harley, C. W. (2011). Selective tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male rats. Hippocampus, 21, 1250–1262.
- Whittington, M. A., & Traub, R. D. (2003). Interneuron diversity series: Inhibitory interneurons and network oscillations in vitro. Trends in Neuroscience, 26, 676–682.
- Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences U S A, 107, 5248–5253.