Therapeutic potential of stem cell-derived somatic cells to treat metabolic dysfunction-associated steatotic liver disease and diabetes
Eduardo H. Gilglioni
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorMayank Bansal
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorWadsen St-Pierre-Wijckmans
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorStephanie Talamantes
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorAlvile Kasarinaite
Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorDavid C. Hay
Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCorresponding Author
Esteban N. Gurzov
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
WELBIO Department, WEL Research Institute, Wavre, Belgium
Correspondence
Esteban N. Gurzov, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Route de Lennik 808, Brussels, B1070, Belgium.
Email: [email protected]
Search for more papers by this authorEduardo H. Gilglioni
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorMayank Bansal
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorWadsen St-Pierre-Wijckmans
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorStephanie Talamantes
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
Search for more papers by this authorAlvile Kasarinaite
Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorDavid C. Hay
Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCorresponding Author
Esteban N. Gurzov
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
WELBIO Department, WEL Research Institute, Wavre, Belgium
Correspondence
Esteban N. Gurzov, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Route de Lennik 808, Brussels, B1070, Belgium.
Email: [email protected]
Search for more papers by this authorEduardo H. Gilglioni and Mayank Bansal contributed equally to this work.
Funding information: This work was supported by a Horizon Europe - European Research Council (ERC) Consolidator grant METAPTPs (GA817940), Juvenile Diabetes Research Foundation (JDRF) Career Development Award (CDA-2019-758-A-N), Fonds De La Recherche Scientifique grants: FNRS-WELBIO grant (35112672), TELEVIE grant (40007402), and ULB Foundation. WSW and ST are supported by a FNRS Aspirant and TELEVIE scholarships, respectively. ENG is a Research Associate of the FNRS, Belgium. DCH and AK were supported by an MRC Precision Medicine iCase award.
Summary
Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models ‘in a dish’ and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes. In this review, we explore recent advances in the generation of stem cell-derived hepatocyte-like cells and insulin-producing β-like cells. We cover the different differentiation strategies, new discoveries, and the caveats that still exist regarding their routine use. Finally, we discuss the challenges and limitations of stem cell-derived therapies as a clinical strategy to manage metabolic diseases in humans.
CONFLICT OF INTEREST STATEMENT
DCH is a founder, director, and shareholder in Stimuliver ApS and Stemnovated Limited.
REFERENCES
- 1Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, et al. Obesity. Nat Rev Dis Primers. 2017; 3(1): 17034. doi:10.1038/nrdp.2017.34
- 2Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023; 79(3): E93-E94. doi:10.1097/HEP.0000000000000696
- 3Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep. 2023; 5(9):100811. doi:10.1016/j.jhepr.2023.100811
- 4Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel strategies to protect and visualize pancreatic beta cells in diabetes. Trends Endocrinol Metab. 2020; 31(12): 905-917. doi:10.1016/j.tem.2020.10.002
- 5Sims EK, Carr ALJ, Oram RA, DiMeglio LA, Evans-Molina C. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med. 2021; 27(7): 1154-1164. doi:10.1038/s41591-021-01418-2
- 6Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391): 1145-1147. doi:10.1126/science.282.5391.1145
- 7Clark AT, Brivanlou A, Fu J, et al. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: considerations leading to the revised ISSCR guidelines. Stem Cell Reports. 2021; 16(6): 1416-1424. doi:10.1016/j.stemcr.2021.05.008
- 8Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-872. doi:10.1016/j.cell.2007.11.019
- 9Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858): 1917-1920. doi:10.1126/science.1151526
- 10Gonzalez F, Boue S, Izpisua Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet. 2011; 12(4): 231-242. doi:10.1038/nrg2937
- 11Tiscornia G, Vivas EL, Izpisua Belmonte JC. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med. 2011; 17(12): 1570-1576. doi:10.1038/nm.2504
- 12Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9): 636-646. doi:10.1038/nrg2842
- 13Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011; 29(2): 143-148. doi:10.1038/nbt.1755
- 14Doudna JA, Charpentier E, Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213):1258096. doi:10.1126/science.1258096
- 15Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010; 79(1): 181-211. doi:10.1146/annurev.biochem.052308.093131
- 16Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461(7267): 1071-1078. doi:10.1038/nature08467
- 17Waryah CB, Moses C, Arooj M, Blancafort P. Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Methods Mol Biol. 2018; 1767: 19-63. doi:10.1007/978-1-4939-7774-1_2
- 18Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821. doi:10.1126/science.1225829
- 19Zhang Z, Zhang Y, Gao F, et al. CRISPR/Cas9 Genome-editing system in human stem cells: current status and future prospects. Mol Ther Nucleic Acids. 2017; 9: 230-241. doi:10.1016/j.omtn.2017.09.009
- 20Wang Y, Tatham MH, Schmidt-Heck W, et al. Multiomics analyses of HNF4α protein domain function during human pluripotent stem cell differentiation. iScience. 2019; 16: 206-217. doi:10.1016/j.isci.2019.05.028
- 21Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development. 2017; 144(16): 2873-2888. doi:10.1242/dev.140756
- 22Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S a. 2008; 105(34): 12301-12306. doi:10.1073/pnas.0806522105
- 23Sullivan GJ, Hay DC, Park IH, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010; 51(1): 329-335. doi:10.1002/hep.23335
- 24Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010; 51(1): 297-305. doi:10.1002/hep.23354
- 25Touboul T, Hannan NR, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010; 51(5): 1754-1765. doi:10.1002/hep.23506
- 26Takebe T, Sekine K, Kimura M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 2017; 21(10): 2661-2670. doi:10.1016/j.celrep.2017.11.005
- 27Lucendo-Villarin B, Meseguer-Ripolles J, Drew J, et al. Development of a cost-effective automated platform to produce human liver spheroids for basic and applied research. Biofabrication. 2020; 13(1):015009. doi:10.1088/1758-5090/abbdb2
10.1088/1758-5090/abbdb2 Google Scholar
- 28Hay DC, Zhao D, Ross A, Mandalam R, Lebkowski J, Cui W. Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells. 2007; 9(1): 51-62. doi:10.1089/clo.2006.0045
- 29Cai J, Zhao Y, Liu Y, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007; 45(5): 1229-1239. doi:10.1002/hep.21582
- 30Sancho-Bru P, Roelandt P, Narain N, et al. Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells. J Hepatol. 2011; 54(1): 98-107. doi:10.1016/j.jhep.2010.06.014
- 31Rashidi H, Alhaque S, Szkolnicka D, Flint O, Hay DC. Fluid shear stress modulation of hepatocyte-like cell function. Arch Toxicol. 2016; 90(7): 1757-1761. doi:10.1007/s00204-016-1689-8
- 32Szkolnicka D, Lucendo-Villarin B, Moore JK, Simpson KJ, Forbes SJ, Hay DC. Reducing hepatocyte injury and necrosis in response to paracetamol using noncoding RNAs. Stem Cells Transl Med. 2016; 5(6): 764-772. doi:10.5966/sctm.2015-0117
- 33Szkolnicka D, Farnworth SL, Lucendo-Villarin B, et al. Accurate prediction of drug-induced liver injury using stem cell-derived populations. Stem Cells Transl Med. 2014; 3(2): 141-148. doi:10.5966/sctm.2013-0146
- 34Meseguer-Ripolles J, Lucendo-Villarin B, Tucker C, et al. Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. iScience. 2021; 24(6):102552. doi:10.1016/j.isci.2021.102552
- 35Baxter MA, Rowe C, Alder J, et al. Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Res. 2010; 5(1): 4-22. doi:10.1016/j.scr.2010.02.002
- 36Sinton MC, Meseguer-Ripolles J, Lucendo-Villarin B, Drake AJ, Hay DC. Modeling human hepatic steatosis in pluripotent stem cell-derived hepatocytes. STAR Protoc. 2021; 2(2):100493. doi:10.1016/j.xpro.2021.100493
- 37Ma H, de Zwaan E, Guo YE, et al. The nuclear receptor THRB facilitates differentiation of human PSCs into more mature hepatocytes. Cell Stem Cell. 2022; 29:e11. doi:10.1016/j.stem.2022.03.015
- 38Chang M, Bogacheva MS, Lou YR. Challenges for the applications of human pluripotent stem cell-derived liver organoids. Front Cell Dev Biol. 2021; 9:748576. doi:10.3389/fcell.2021.748576
- 39D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005; 23(12): 1534-1541. doi:10.1038/nbt1163
- 40DeLaForest A, Nagaoka M, Si-Tayeb K, et al. HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development. 2011; 138(19): 4143-4153. doi:10.1242/dev.062547
- 41Clotman F, Jacquemin P, Plumb-Rudewiez N, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 2005; 19(16): 1849-1854. doi:10.1101/gad.340305
- 42van Son KC, Verschuren L, Hanemaaijer R, et al. Non-parenchymal cells and the extracellular matrix in hepatocellular carcinoma in non-alcoholic fatty liver disease. Cancers (Basel). 2023; 15(4): 15. doi:10.3390/cancers15041308
10.3390/cancers15041308 Google Scholar
- 43Siller R, Greenhough S, Naumovska E, Sullivan GJ. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports. 2015; 4(5): 939-952. doi:10.1016/j.stemcr.2015.04.001
- 44Farhan F, Trivedi M, Di Wu P, Cui W. Extracellular matrix modulates the spatial hepatic features in hepatocyte-like cells derived from human embryonic stem cells. Stem Cell Res Ther. 2023; 14(1): 314. doi:10.1186/s13287-023-03542-x
- 45Mun SJ, Ryu JS, Lee MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 2019; 71(5): 970-985. doi:10.1016/j.jhep.2019.06.030
- 46Baxter M, Withey S, Harrison S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015; 62(3): 581-589. doi:10.1016/j.jhep.2014.10.016
- 47Meseguer-Ripolles J, Wang Y, Sorteberg A, et al. Hepatic progenitor specification from pluripotent stem cells using a defined differentiation system. J vis Exp. 2020;(159). doi:10.3791/61256-v
- 48Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology. 2012; 55(4): 1193-1203. doi:10.1002/hep.24790
- 49Lucendo-Villarin B, Wang Y, Mallanna SK, Kimbrel EA, Hay DC. Screening a compound library to identify additives that boost cytochrome P450 enzyme function in vascularised liver spheres. Cells. 2024; 13(18): 13. doi:10.3390/cells13181594
- 50Ardalani H, Sengupta S, Harms V, Vickerman V, Thomson JA, Murphy WL. 3-D culture and endothelial cells improve maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomater. 2019; 95: 371-381. doi:10.1016/j.actbio.2019.07.047
- 51Rashidi H, Luu NT, Alwahsh SM, et al. 3D human liver tissue from pluripotent stem cells displays stable phenotype in vitro and supports compromised liver function in vivo. Arch Toxicol. 2018; 92(10): 3117-3129. doi:10.1007/s00204-018-2280-2
- 52Lee G, Kim H, Park JY, et al. Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials. 2021; 269:120529. doi:10.1016/j.biomaterials.2020.120529
- 53Wu F, Wu D, Ren Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol. 2019; 70(6): 1145-1158. doi:10.1016/j.jhep.2018.12.028
- 54Shinozawa T, Kimura M, Cai Y, et al. High-Fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology. 2021; 160: 831-846.e10. doi:10.1053/j.gastro.2020.10.002
- 55Ramli MNB, Lim YS, Koe CT, et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology. 2020; 159:e12. doi:10.1053/j.gastro.2020.06.010
10.1053/j.gastro.2020.06.010 Google Scholar
- 56Guan Y, Enejder A, Wang M, et al. A human multi-lineage hepatic organoid model for liver fibrosis. Nat Commun. 2021; 12(1): 6138. doi:10.1038/s41467-021-26410-9
- 57Jin B, Wu XA, Du SD. Human pluripotent stem cell-derived hepatic organoids: a promising novel model of liver diseases. Gastroenterology. 2021; 160(6): 2208. doi:10.1053/j.gastro.2020.09.062
- 58Ouchi R, Togo S, Kimura M, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 2019; 30:e6. doi:10.1016/j.cmet.2019.05.007
- 59Carolina E, Kuse Y, Okumura A, et al. Generation of human iPSC-derived 3D bile duct within liver organoid by incorporating human iPSC-derived blood vessel. Nat Commun. 2024; 15(1): 7424. doi:10.1038/s41467-024-51487-3
- 60Koui Y, Himeno M, Mori Y, et al. Development of human iPSC-derived quiescent hepatic stellate cell-like cells for drug discovery and in vitro disease modeling. Stem Cell Rep. 2021; 16(12): 3050-3063. doi:10.1016/j.stemcr.2021.11.002
- 61Tasnim F, Xing J, Huang X, et al. Generation of mature Kupffer cells from human induced pluripotent stem cells. Biomaterials. 2019; 192: 377-391. doi:10.1016/j.biomaterials.2018.11.016
- 62Ackermann M, Kempf H, Hetzel M, et al. Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat Commun. 2018; 9(1): 5088. doi:10.1038/s41467-018-07570-7
- 63Cayo MA, Cai J, DeLaForest A, et al. JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology. 2012; 56(6): 2163-2171. doi:10.1002/hep.25871
- 64Gao X, Liu Y. A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines. Cell Biol Toxicol. 2017; 33(4): 407-421. doi:10.1007/s10565-017-9383-z
- 65Okada H, Nakanishi C, Yoshida S, et al. Function and immunogenicity of gene-corrected iPSC-derived hepatocyte-like cells in restoring low density lipoprotein uptake in homozygous familial hypercholesterolemia. Sci Rep. 2019; 9(1): 4695. doi:10.1038/s41598-019-41056-w
- 66Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol. 2017; 66: 51-68. doi:10.1016/j.semcdb.2017.01.005
- 67D'Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006; 24(11): 1392-1401. doi:10.1038/nbt1259
- 68Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008; 26(4): 443-452. doi:10.1038/nbt1393
- 69Pagliuca FW, Millman JR, Gurtler M, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014; 159(2): 428-439. doi:10.1016/j.cell.2014.09.040
- 70Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014; 32(11): 1121-1133. doi:10.1038/nbt.3033
- 71Veres A, Faust AL, Bushnell HL, et al. Charting cellular identity during human in vitro beta-cell differentiation. Nature. 2019; 569(7756): 368-373. doi:10.1038/s41586-019-1168-5
- 72Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of dynamic function in human stem cell-derived beta cells. Stem Cell Reports. 2019; 12(2): 351-365. doi:10.1016/j.stemcr.2018.12.012
- 73Nair GG, Liu JS, Russ HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived beta cells. Nat Cell Biol. 2019; 21(2): 263-274. doi:10.1038/s41556-018-0271-4
- 74Balboa D, Barsby T, Lithovius V, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol. 2022; 40(7): 1042-1055. doi:10.1038/s41587-022-01219-z
- 75Russ HA, Parent AV, Ringler JJ, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO j. 2015; 34(13): 1759-1772. doi:10.15252/embj.201591058
- 76Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Single-cell transcriptome profiling reveals beta cell maturation in stem cell-derived islets after transplantation. Cell Rep. 2020; 32(8):108067. doi:10.1016/j.celrep.2020.108067
- 77Docherty FM, Riemondy KA, Castro-Gutierrez R, et al. ENTPD3 marks mature stem cell-derived beta-cells formed by self-aggregation in vitro. Diabetes. 2021; 70(11): 2554-2567. doi:10.2337/db20-0873
- 78Negueruela J, Vandenbempt V, Talamantes S, et al. Protocol for CRISPR-Cas12a genome editing of protein tyrosine phosphatases in human pluripotent stem cells and functional beta-like cell generation. STAR Protoc. 2024; 5(3):103297. doi:10.1016/j.xpro.2024.103297
- 79Yoshihara E, O'Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature. 2020; 586(7830): 606-611. doi:10.1038/s41586-020-2631-z
- 80Velazco-Cruz L, Goedegebuure MM, Maxwell KG, Augsornworawat P, Hogrebe NJ, Millman JR. SIX2 regulates human beta cell differentiation from stem cells and functional maturation in vitro. Cell Rep. 2020; 31(8):107687. doi:10.1016/j.celrep.2020.107687
- 81Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol. 2020; 38(4): 460-470. doi:10.1038/s41587-020-0430-6
- 82Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell 2020; 26: 108-122.e10. doi:10.1016/j.stem.2019.11.011.
- 83Vandenbempt V, Eski SE, Brahma MK, et al. HAMSAB diet ameliorates dysfunctional signaling in pancreatic islets in autoimmune diabetes. iScience. 2024; 27(1):108694. doi:10.1016/j.isci.2023.108694
- 84Poon F, Sambathkumar R, Korytnikov R, et al. Tankyrase inhibition promotes endocrine commitment of hPSC-derived pancreatic progenitors. Nat Commun. 2024; 15(1): 8754. doi:10.1038/s41467-024-53068-w
- 85Aghazadeh Y, Sarangi F, Poon F, et al. GP2-enriched pancreatic progenitors give rise to functional beta cells in vivo and eliminate the risk of teratoma formation. Stem Cell Reports. 2022; 17(4): 964-978. doi:10.1016/j.stemcr.2022.03.004
- 86Kahraman S, Dirice E, Basile G, et al. Abnormal exocrine-endocrine cell cross-talk promotes beta-cell dysfunction and loss in MODY8. Nat Metab. 2022; 4(1): 76-89. doi:10.1038/s42255-021-00516-2
- 87Langlois A, Dumond A, Vion J, Pinget M, Bouzakri K. Crosstalk communications between islets cells and insulin target tissue: the hidden face of iceberg. Front Endocrinol (Lausanne). 2022; 13:836344. doi:10.3389/fendo.2022.836344
- 88Wang D, Wang J, Bai L, et al. Long-term expansion of pancreatic islet organoids from resident Procr(+) progenitors. Cell. 2020; 180: 1198-1211.e19. doi:10.1016/j.cell.2020.02.048
- 89Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia. 2016; 59(4): 659-667. doi:10.1007/s00125-015-3862-7
- 90Picollet-D'hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-Chip: A systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 2021; 39(8): 788-810. doi:10.1016/j.tibtech.2020.11.014
- 91Ravassard P, Hazhouz Y, Pechberty S, et al. A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest. 2011; 121(9): 3589-3597. doi:10.1172/JCI58447
- 92Puri S, Roy N, Russ HA, et al. Replication confers beta cell immaturity. Nat Commun. 2018; 9(1): 485. doi:10.1038/s41467-018-02939-0
- 93Blanchi B, Taurand M, Colace C, et al. EndoC-betaH5 cells are storable and ready-to-use human pancreatic beta cells with physiological insulin secretion. Mol Metab. 2023; 76:101772. doi:10.1016/j.molmet.2023.101772
- 94Zhu Z, Li QV, Lee K, et al. Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell. 2016; 18(6): 755-768. doi:10.1016/j.stem.2016.03.015
- 95Wang X, Sterr M, Ansarullah BI, Bottcher A, Beckenbauer J, et al. Point mutations in the PDX1 transactivation domain impair human beta-cell development and function. Mol Metab. 2019; 24: 80-97. doi:10.1016/j.molmet.2019.03.006
- 96Miguel-Escalada I, Maestro MA, Balboa D, et al. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell. 2022; 57: 1922-1936.e9. doi:10.1016/j.devcel.2022.07.014
- 97Trott J, Alpagu Y, Tan EK, et al. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6. Development. 2020; 147. doi:10.1242/dev.194878
- 98Amin S, Cook B, Zhou T, et al. Discovery of a drug candidate for GLIS3-associated diabetes. Nat Commun. 2018; 9(1): 2681. doi:10.1038/s41467-018-04918-x
- 99Gage BK, Asadi A, Baker RK, et al. The role of ARX in human pancreatic endocrine specification. PLoS ONE. 2015; 10(12):e0144100. doi:10.1371/journal.pone.0144100
- 100Shi ZD, Lee K, Yang D, et al. Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human pancreatic development. Cell Stem Cell. 2017; 20: 675-688.e6. doi:10.1016/j.stem.2017.01.001
- 101Tiyaboonchai A, Cardenas-Diaz FL, Ying L, et al. GATA6 plays an important role in the induction of human definitive endoderm, development of the pancreas, and functionality of pancreatic beta cells. Stem Cell Reports. 2017; 8(3): 589-604. doi:10.1016/j.stemcr.2016.12.026
- 102Guo D, Liu H, Ruzi A, et al. Modeling congenital Hyperinsulinism with ABCC8-deficient human embryonic stem cells generated by CRISPR/Cas9. Sci Rep. 2017; 7(1): 3156. doi:10.1038/s41598-017-03349-w
- 103Lithovius V, Saarimaki-Vire J, Balboa D, et al. SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism. Diabetologia. 2021; 64(3): 630-640. doi:10.1007/s00125-020-05346-7
- 104Saarimaki-Vire J, Balboa D, Russell MA, et al. An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation. Cell Rep. 2017; 19(2): 281-294. doi:10.1016/j.celrep.2017.03.055
- 105Schaschkow A, Pang L, Vandenbempt V, et al. STAT3 regulates mitochondrial gene expression in pancreatic beta-cells and its deficiency induces glucose intolerance in obesity. Diabetes. 2021; 70(9): 2026-2041. doi:10.2337/db20-1222
- 106De Franco E, Lytrivi M, Ibrahim H, et al. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J Clin Invest. 2020; 130(12): 6338-6353. doi:10.1172/JCI141455
- 107Maxwell KG, Augsornworawat P, Velazco-Cruz L, et al. Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med. 2020; 12(540): 12. doi:10.1126/scitranslmed.aax9106
- 108Montaser H, Patel KA, Balboa D, et al. Loss of MANF causes childhood-onset syndromic diabetes due to increased endoplasmic reticulum stress. Diabetes. 2021; 70(4): 1006-1018. doi:10.2337/db20-1174
- 109Lytrivi M, Senee V, Salpea P, et al. DNAJC3 deficiency induces beta-cell mitochondrial apoptosis and causes syndromic young-onset diabetes. Eur J Endocrinol. 2021; 184: 455-468.
- 110Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D. Beta cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Reports. 2018; 11(6): 1407-1415. doi:10.1016/j.stemcr.2018.11.006
- 111Balboa D, Saarimaki-Vire J, Borshagovski D, et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife. 2018; 7: 7. doi:10.7554/eLife.38519
- 112Elvira B, Vandenbempt V, Bauza-Martinez J, et al. PTPN2 regulates the interferon signaling and endoplasmic reticulum stress response in pancreatic beta-cells in autoimmune diabetes. Diabetes. 2022; 71(4): 653-668. doi:10.2337/db21-0443
- 113Memon B, Elsayed AK, Bettahi I, et al. iPSCs derived from insulin resistant offspring of type 2 diabetic patients show increased oxidative stress and lactate secretion. Stem Cell Res Ther. 2022; 13(1): 428. doi:10.1186/s13287-022-03123-4
- 114Zeng H, Guo M, Zhou T, et al. An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell. 2016; 19(3): 326-340. doi:10.1016/j.stem.2016.07.002
- 115Guo M, Zhang T, Dong X, et al. Using hESCs to probe the interaction of the diabetes-associated genes CDKAL1 and MT1E. Cell Rep. 2017; 19(8): 1512-1521. doi:10.1016/j.celrep.2017.04.070
- 116Dwivedi OP, Lehtovirta M, Hastoy B, et al. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet. 2019; 51(11): 1596-1606. doi:10.1038/s41588-019-0513-9
- 117Mattis KK, Krentz NAJ, Metzendorf C, et al. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia. 2023; 66(4): 674-694. doi:10.1007/s00125-022-05856-6
- 118Aldous N, Elsayed AK, Memon B, Ijaz S, Hayat S, Abdelalim EM. Deletion of RFX6 impairs iPSC-derived islet organoid development and survival, with no impact on PDX1(+)/NKX6.1(+) progenitors. Diabetologia. 2024.
- 119Ibrahim H, Balboa D, Saarimaki-Vire J, et al. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia. 2024; 67(8): 1642-1662. doi:10.1007/s00125-024-06163-y
- 120Faccioli LA, Sun Y, Animasahun O, et al. Human induced pluripotent stem cell based hepatic-modeling of lipid metabolism associated TM6SF2 E167K variant. Hepatology. 2024. doi:10.1097/HEP.0000000000001065
- 121Aghadi M, Elgendy R, Abdelalim EM. Loss of FOXA2 induces ER stress and hepatic steatosis and alters developmental gene expression in human iPSC-derived hepatocytes. Cell Death Dis. 2022; 13(8): 713. doi:10.1038/s41419-022-05158-0
- 122Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008; 40(12): 1461-1465. doi:10.1038/ng.257
- 123Tilson SG, Morell CM, Lenaerts AS, et al. Modeling PNPLA3-associated NAFLD using human-induced pluripotent stem cells. Hepatology. 2021; 74(6): 2998-3017. doi:10.1002/hep.32063
- 124Park J, Zhao Y, Zhang F, et al. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J Hepatol. 2023; 78(1): 45-56. doi:10.1016/j.jhep.2022.08.022
- 125Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell. 2022; 185: 4216-4232.e16. doi:10.1016/j.cell.2022.09.031
- 126Lee CW, Chen YF, Wu HH, Lee OK. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology. 2018; 154(1): 46-56. doi:10.1053/j.gastro.2017.09.049
- 127Zhou GP, Jiang YZ, Sun LY, Zhu ZJ. Therapeutic effect and safety of stem cell therapy for chronic liver disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2020; 11(1): 419. doi:10.1186/s13287-020-01935-w
- 128Liu Y, Dong Y, Wu X, Xu X, Niu J. The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther. 2022; 13(1): 204. doi:10.1186/s13287-022-02882-4
- 129Newsome PN, Fox R, King AL, et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2018; 3(1): 25-36. doi:10.1016/S2468-1253(17)30326-6
- 130Suk KT, Yoon JH, Kim MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology. 2016; 64(6): 2185-2197. doi:10.1002/hep.28693
- 131Pepper AR, Pawlick R, Bruni A, et al. Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Reports. 2017; 8(6): 1689-1700. doi:10.1016/j.stemcr.2017.05.004
- 132Stock AA, Manzoli V, De Toni T, et al. Conformal coating of stem cell-derived islets for beta cell replacement in type 1 diabetes. Stem Cell Reports. 2020; 14(1): 91-104. doi:10.1016/j.stemcr.2019.11.004
- 133Ma H, Wert KJ, Shvartsman D, Melton DA, Jaenisch R. Establishment of human pluripotent stem cell-derived pancreatic beta-like cells in the mouse pancreas. Proc Natl Acad Sci U S a. 2018; 115(15): 3924-3929. doi:10.1073/pnas.1702059115
- 134Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000; 343(4): 230-238. doi:10.1056/NEJM200007273430401
- 135Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006; 355(13): 1318-1330. doi:10.1056/NEJMoa061267
- 136Younossi ZM, Zelber-Sagi S, Henry L, Gerber LH. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2023; 20(11): 708-722. doi:10.1038/s41575-023-00800-4
- 137Noureddin M. MASH clinical trials and drugs pipeline: an impending tsunami. Hepatology. 2024. doi:10.1097/HEP.0000000000000860
- 138Li C, Jin Y, Wei S, et al. Hippo signaling controls NLR family pyrin domain containing 3 activation and governs immunoregulation of mesenchymal stem cells in mouse liver injury. Hepatology. 2019; 70(5): 1714-1731. doi:10.1002/hep.30700
- 139An SY, Jang YJ, Lim HJ, et al. Milk fat globule-EGF factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology. 2017; 152(5): 1174-1186. doi:10.1053/j.gastro.2016.12.003
- 140Terrault NA, Francoz C, Berenguer M, Charlton M, Heimbach J. Liver transplantation 2023: status report, current and future challenges. Clin Gastroenterol Hepatol. 2023; 21(8): 2150-2166. doi:10.1016/j.cgh.2023.04.005
- 141Kwong AJ, Ebel NH, Kim WR, et al. OPTN/SRTR 2021 annual data report: liver. Am J Transplant. 2023; 23(2): S178-S263. doi:10.1016/j.ajt.2023.02.006
- 142Nie YZ, Zheng YW, Ogawa M, Miyagi E, Taniguchi H. Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure. Stem Cell Res Ther. 2018; 9(1): 5. doi:10.1186/s13287-017-0749-1
- 143Huang B, Cheng X, Wang H, et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med. 2016; 14(1): 45. doi:10.1186/s12967-016-0792-1
- 144Haldar D, Kern B, Hodson J, et al. Outcomes of liver transplantation for non-alcoholic steatohepatitis: a European liver transplant registry study. J Hepatol. 2019; 71(2): 313-322. doi:10.1016/j.jhep.2019.04.011
- 145Wang S, Du Y, Zhang B, et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell. 2024; 187(22): 6152-6164.e18. doi:10.1016/j.cell.2024.09.004
- 146Wu J, Li T, Guo M, et al. Treating a type 2 diabetic patient with impaired pancreatic islet function by personalized endoderm stem cell-derived islet tissue. Cell Discov. 2024; 10(1): 45. doi:10.1038/s41421-024-00662-3
- 147Pal P, Palui R, Ray S. Heterogeneity of non-alcoholic fatty liver disease: implications for clinical practice and research activity. World J Hepatol. 2021; 13(11): 1584-1610. doi:10.4254/wjh.v13.i11.1584
- 148Sui L, Xin Y, Du Q, et al. Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size. JCI Insight. 2021; 6(5): 6. doi:10.1172/jci.insight.141553
- 149Zhou X, Naik S, Dakhova O, Dotti G, Heslop HE, Brenner MK. Serial activation of the inducible caspase 9 safety switch after human stem cell transplantation. Mol Ther. 2016; 24(4): 823-831. doi:10.1038/mt.2015.234
- 150van der Torren CR, Zaldumbide A, Duinkerken G, et al. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia. 2017; 60(1): 126-133. doi:10.1007/s00125-016-4125-y
- 151Romano M, Elgueta R, McCluskey D, et al. Pluripotent stem cell-derived hepatocytes inhibit T cell proliferation in vitro through tryptophan starvation. Cells. 2021; 11(1): 11. doi:10.3390/cells11010024
- 152Han X, Wang M, Duan S, et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci U S a. 2019; 116(21): 10441-10446. doi:10.1073/pnas.1902566116
- 153Kajiwara M, Aoi T, Okita K, et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S a. 2012; 109(31): 12538-12543. doi:10.1073/pnas.1209979109
- 154Nishizawa M, Chonabayashi K, Nomura M, et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell. 2016; 19(3): 341-354. doi:10.1016/j.stem.2016.06.019
- 155Luo Q, Wang N, Que H, et al. Pluripotent stem cell-derived hepatocyte-like cells: induction methods and applications. Int J Mol Sci. 2023; 24(14):11592. doi:10.3390/ijms241411592
- 156Nell P, Kattler K, Feuerborn D, et al. Identification of an FXR-modulated liver-intestine hybrid state in iPSC-derived hepatocyte-like cells. J Hepatol. 2022; 77(5): 1386-1398. doi:10.1016/j.jhep.2022.07.009
- 157Zhu H, Wang G, Nguyen-Ngoc KV, et al. Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev Cell. 2023; 58: 727-743.e11. doi:10.1016/j.devcel.2023.03.011
- 158Shapiro AMJ, Thompson D, Donner TW, et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep Med. 2021; 2(12):100466. doi:10.1016/j.xcrm.2021.100466
- 159Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell. 2021; 28: 2047-2061.e5. doi:10.1016/j.stem.2021.10.003
- 160Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020; 27(4): 523-531. doi:10.1016/j.stem.2020.09.014