Near- and mid-infrared spectral diversity in the Aguas Zarcas carbonaceous chondrite and implications for inferring aqueous processes on primitive asteroids using remote sensing
Corresponding Author
Cody Schultz
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
Correspondence
Cody Schultz, Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA.
Email: [email protected]
Search for more papers by this authorRalph E. Milliken
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
Search for more papers by this authorJoseph Boesenberg
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
Search for more papers by this authorImene Kerraouch
BCMS, Arizona State University, Tempe, Arizona, USA
Institute für Planetologie, University of Münster, Münster, Germany
Search for more papers by this authorCorresponding Author
Cody Schultz
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
Correspondence
Cody Schultz, Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA.
Email: [email protected]
Search for more papers by this authorRalph E. Milliken
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
Search for more papers by this authorJoseph Boesenberg
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
Search for more papers by this authorImene Kerraouch
BCMS, Arizona State University, Tempe, Arizona, USA
Institute für Planetologie, University of Münster, Münster, Germany
Search for more papers by this authorEditorial Handling—Edward Cloutis
Abstract
CM carbonaceous chondrites are complex brecciated meteorites that exhibit significant chemical, mineralogic, and petrographic diversity both between and within individual samples. As most reflectance spectroscopy studies of carbonaceous chondrites are performed on bulk powders, important questions remain about the true spectral diversity of these complex breccias and the degree to which lab-based meteorite spectra can be reliably related to remotely acquired spectra of primitive asteroids. The Aguas Zarcas meteorite is a unique CM chondrite in that it has been found to exhibit at least five chemically and isotopically distinct lithologies that are all associated with a single fall event. Here, we describe a coordinated petrographic and spectroscopic study to further investigate the thermochemical and collisional history of the Aguas Zarcas parent body and to better understand how to interpret remotely acquired spectra of primitive asteroids. Four intact sections of the Aguas Zarcas meteorite, which together represent at least three to four distinct lithologies, were analyzed using microscope FT-IR (μFT-IR) spectroscopy and electron probe microanalysis (EPMA) elemental mapping. Our study found significant variations in spectral features, particularly in the mid-infrared (MIR) wavelength region, that can be linked to petrographic diversity between lithologies. The relative abundance of matrix phyllosilicates and pyroxene appears to have the strongest influence on the shape, position, and strength of MIR spectral features. Linear spectral unmixing models as a method for compositional interpretation showed varying accuracy when compared to EPMA-based estimates, with integrated μFT-IR spectral maps showing better results compared to unmixing of bulk (larger spot size) FT-IR spectra. A notable discovery in two sections of the Aguas Zarcas meteorite was the presence of carbonate veins along the boundary of chemically and petrographically separate lithologies, which provide important constraints on the nature and timing of pre- and post-brecciation aqueous alteration.
Open Research
Data availability statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
maps14339-sup-0001-Figures.pdfPDF document, 2.8 MB | Figure S1. The EPMA elemental oxide maps of a region of the Field-1 section show the distribution of MgO, FeO, and SiO2 + Al2O3 (top), the distribution of SO2 (middle), and the apparent porosity, which is proportional to the summed total of all elements measured with EPMA (bottom). Summed elemental oxide totals in these sections are typically less than 100 wt%, which can be attributed to several factors, like the presence of OH/H2O and other unmeasured phases. The biggest driver of these differences though likely results from differences in the porosity throughout the sample compared to the mineral standards that the EPMA was calibrated against. We include these maps to highlight important differences in both S abundance and apparent porosity that is not captured in simple three-element ternary projections but that were important in the automated classification of the pixels in these maps. Figure S2. A representative RMSE map for the UM-1 section. Areas in red to green color generally show good modeling agreement between the measured μFT-IR spectrum and the forward modeled spectrum using endmember estimates from the linear unmixing (inverse modeling) of each spectrum. Areas in blue to purple color show poorer agreement and are typically located in areas where unique and/or minor phases are present (e.g. an Fe-rich olivine chondrule just northeast of center). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Barucci, M. A., Hasselmann, P. H., Fulchignoni, M., Honda, R., Yokota, Y., Sugita, S., Kitazato, K., et al. 2019. Multivariable Statistical Analysis of Spectrophotometry and Spectra of (162173) Ryugu as Observed by JAXA Hayabusa2 Mission. Astronomy and Astrophysics 629: A13. https://doi.org/10.1051/0004-6361/201935851.
- Bates, H. C., King, A. J., Donaldson Hanna, K. L., Bowles, N. E., and Russell, S. S. 2020. Linking Mineralogy and Spectroscopy of Highly Aqueously Altered CM and CI Carbonaceous Chondrites in Preparation for Primitive Asteroid Sample Return. Meteoritics & Planetary Science 55: 77–101. https://doi.org/10.1111/maps.13411.
- Beck, P., Garenne, A., Quirico, E., Bonal, L., Montes-Hernandez, G., Moynier, F., and Schmitt, B. 2014. Transmission Infrared Spectra (2-25μm) of Carbonaceous Chondrites (CI, CM, CV-CK, CR, C2 Ungrouped): Mineralogy, Water, and Asteroidal Processes. Icarus 229: 263–277. https://doi.org/10.1016/j.icarus.2013.10.019.
- Beck, P., Quirico, E., Montes-Hernandez, G., Bonal, L., Bollard, J., Orthous-Daunay, F. R., Howard, K. T., et al. 2010. Hydrous Mineralogy of CM and CI Chondrites from Infrared Spectroscopy and their Relationship with Low Albedo Asteroids. Geochimica et Cosmochimica Acta 74: 4881–4892. https://doi.org/10.1016/j.gca.2010.05.020.
- Bibring, J. P., Hamm, V., Langevin, Y., Pilorget, C., Arondel, A., Bouzit, M., Chaigneau, M., et al. 2017. The MicrOmega Investigation Onboard Hayabusa2. In Space Science Reviews, vol. 208: 401–412. the Netherlands: Springer. https://doi.org/10.1007/s11214-017-0335-y.
10.1007/978-94-024-1538-4_20 Google Scholar
- Bibring, J. P., Lamy, P., Langevin, Y., Soufflot, A., Berthé, M., Borg, J., Poulet, F., and Mottola, S. 2007. CIVA. Space Science Reviews 128: 397–412. https://doi.org/10.1007/s11214-006-9135-5.
- Bischoff, A., Scott, E. R. D., Metzler, K., and Goodrich, C. A. 2006. Nature and Origins of Meteoritic Breccias. In Meteorites and the Early Solar System II, edited by K. Metzler, vol. 2: 679–712. Arizona: Tucson.
10.2307/j.ctv1v7zdmm.38 Google Scholar
- Bishop, J. L., King, S. J., Lane, M. D., Brown, A. J., Lafuente, B., Hiroi, T., Roberts, R., Swayze, G. A., Lin, J. F., and Sánchez Román, M. 2021. Spectral Properties of Anhydrous Carbonates and Nitrates. Earth and Space. Science 8: 1–43. https://doi.org/10.1029/2021EA001844.
10.1029/2021EA001844 Google Scholar
- Bishop, J. L., Lane, M. D., Dyar, M. D., and Brown, A. J. 2008. Reflectance and Emission Spectroscopy Study of Four Groups of Phyllosilicates: Smectites, Kaolinite-Serpentines, Chlorites and Micas. Clay Minerals 43: 35–54. https://doi.org/10.1180/claymin.2008.043.1.03.
- Bland, P. A., and Travis, B. J. 2017. Giant convecting mud balls of the early solar system. Science Advances 3: e1602514. https://doi.org/10.1126/sciadv.1602514
- Brantley, S. L., and Olsen, A. A. 2013. Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions. In Treatise on Geochemistry, 2nd ed., vol. 7: 69–113. Amsterdam: Elsevier Inc. https://doi.org/10.1016/B978-0-08-095975-7.00503-9.
- Brearley, A. J. 2006. The Action of Water. In Meteorites and the Early Solar System II, vol. 2: 587–624. Arizona: Tucson.
10.2307/j.ctv1v7zdmm.35 Google Scholar
- Britt, D. T., and Pieters, C. M. 1994. Darkening in Black and Gas-Rich Ordinary Chondrites: The Spectral Effects of Opaque Morphology and Distribution. Geochimica et Cosmochimica Acta 58: 3905–3919. https://doi.org/10.1016/0016-7037(94)90370-0.
- Browning, L. B., Mcsween, H. Y., and Zolensky, M. E. 1996. Correlated Alteration Effects in CM Carbonaceous Chondrites. Geochimica et Cosmochimica Acta 60: 2621–2633.
- Chan, Q. H. S., Zolensky, M. E., Bodnar, R. J., Farley, C., and Cheung, J. C. H. 2016. A Raman Study of Carbontes and Organic Contents in Five CM Chondrites. 45th Lunar and Planetary Science Conference, abstract #1403.
- Cloutis, E. A., Hudon, P., Hiroi, T., Gaffey, M. J., and Mann, P. (2011). Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites. Icarus, 216: 309–346. https://doi.org/10.1016/j.icarus.2011.09.009
- DellaGiustina, D. N., Kaplan, H. H., Simon, A. A., Bottke, W. F., Avdellidou, C., Delbo, M., Ballouz, R. L., et al. 2021. Exogenic Basalt on Asteroid (101955) Bennu. Nature Astronomy 5: 31–38. https://doi.org/10.1038/s41550-020-1195-z.
- Elkins-Tanton, L. 2013. Differentiation in Planetesimals – Where Is the Olivine? Workshop on Planetesimal Formation and Differentiation, 8007.
- Garvie, L. A. J. 2021. Mineralogy of the 2019 Aguas Zarcas (CM2) Carbonaceous Chondrite Meteorite Fall. American Mineralogist 106: 1900–1916. https://doi.org/10.2138/am-2021-7815.
- Garvie, L. A. J., et al. 2024. High Surface Area and Interconnected Nanoporosity of Clay-Rich Astromaterials. Scientific Reports 14: 10358. www.nature.com, https://doi.org/10.1038/s41598-024-61114-2.
- Gattacceca, J., McCubbin, F. M., Bouvier, A., and Grossman, J. N. 2020. The Meteoritical Bulletin, no. 108. Meteoritics & Planetary Science 55: 1146–1150. https://doi.org/10.1111/maps.13493.
- Hamilton, V. E. 2010. Thermal Infrared (Vibrational) Spectroscopy of Mg-Fe Olivines: A Review and Applications to Determining the Composition of Planetary Surfaces. Chemie der Erde 70: 7–33. https://doi.org/10.1016/j.chemer.2009.12.005.
- Hamilton, V. E., Simon, A. A., Christensen, P. R., Reuter, D. C., Clark, B. E., Barucci, M. A., Bowles, N. E., et al. 2019. Evidence for Widespread Hydrated Minerals on Asteroid (101955) Bennu. Nature Astronomy 3: 332–340. https://doi.org/10.1038/s41550-019-0722-2.
- Howard, K. T., Alexander, C. M. O'D., Schrader, D. L., and Dyl, K. A. 2015. Classification of Hydrous Meteorites (CR, CM and C2 Ungrouped) by Phyllosilicate Fraction: PSD-XRD Modal Mineralogy and Planetesimal Environments. Geochimica et Cosmochimica Acta 149: 206–222. https://doi.org/10.1016/j.gca.2014.10.025.
- Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. 2009. Modal Mineralogy of CM2 Chondrites by X-Ray Diffraction (PSD-XRD). Part 1: Total Phyllosilicate Abundance and the Degree of Aqueous Alteration. Geochimica et Cosmochimica Acta 73: 4576–4589. https://doi.org/10.1016/j.gca.2009.04.038.
- Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. 2011. Modal Mineralogy of CM Chondrites by X-Ray Diffraction (PSD-XRD): Part 2. Degree, Nature and Settings of Aqueous Alteration. Geochimica et Cosmochimica Acta 75: 2735–2751. https://doi.org/10.1016/j.gca.2011.02.021.
- Huang, R., Lin, C. T., Sun, W., Ding, X., Zhan, W., and Zhu, J. 2017. The Production of Iron Oxide during Peridotite Serpentinization: Influence of Pyroxene. Geoscience Frontiers 8: 1311–1321. https://doi.org/10.1016/j.gsf.2017.01.001.
- Huang, R., Song, M., Ding, X., Zhu, S., Zhan, W., and Sun, W. 2017. Influence of Pyroxene and Spinel on the Kinetics of Peridotite Serpentinization. Journal of Geophysical Research: Solid Earth 122: 7111–7126. https://doi.org/10.1002/2017JB014231.
- Jawin, E. R., Ballouz, R. L., Ryan, A. J., Kaplan, H. H., McCoy, T. J., Al Asad, M. M., Molaro, J. L., Rozitis, B., and Keller, L. P. 2023. Boulder Diversity in the Nightingale Region of Asteroid (101955) Bennu and Predictions for Physical Properties of the OSIRIS-REx Sample. Journal of Geophysical Research: Planets 128: 1–22. https://doi.org/10.1029/2023JE008019.
- Jawin, E. R., McCoy, T. J., Walsh, K. J., Connolly, H. C., Ballouz, R. L., Ryan, A. J., Kaplan, H. H., et al. 2022. Global Geologic Map of Asteroid (101955) Bennu Indicates Heterogeneous Resurfacing in the Past 500,000 Years. Icarus 381: 114992. https://doi.org/10.1016/j.icarus.2022.114992.
- Kaplan, H. H., and Milliken, R. E. 2018. Reflectance Spectroscopy of Organic Matter in Sedimentary Rocks at Mid-Infrared Wavelengths. Clays and Clay Minerals 66: 173–189. https://doi.org/10.1346/CCMN.2018.064092.
- Kaplan, H. H., Lauretta, D. S., Simon, A. A., Hamilton, V. E., Dellagiustina, D. N., Golish, D. R., Reuter, D. C., et al. 2020. Bright Carbonate Veins on Asteroid (101955) Bennu: Implications for Aqueous Alteration History. Science 370: 1–12. https://doi.org/10.1126/science.abc3557.
- Kaplan, H. H., Milliken, R. E., Alexander, C. M. O. D., and Herd, C. D. K. 2019. Reflectance Spectroscopy of Insoluble Organic Matter (IOM) and Carbonaceous Meteorites. Meteoritics & Planetary Science 54: 1051–1068. https://doi.org/10.1111/maps.13264.
- Kerraouch, I., Bischoff, A., Zolensky, M. E., Pack, A., Patzek, M., Hanna, R. D., Fries, M. D., et al. 2021. The Polymict Carbonaceous Breccia Aguas Zarcas: A Potential Analog to Samples Being Returned by the OSIRIS-REx and Hayabusa2 Missions. Meteoritics & Planetary Science 56: 277–310. https://doi.org/10.1111/maps.13620.
- Kerraouch, I., Kebukawa, Y., Bischoff, A., Zolensky, M. E., Wölfer, E., Hellmann, J. L., Ito, M., et al. 2022. Heterogeneous Nature of the Carbonaceous Chondrite Breccia Aguas Zarcas—Cosmochemical Characterization and Origin of New Carbonaceous Chondrite Lithologies. Geochimica et Cosmochimica Acta 334: 155–186. https://doi.org/10.1016/j.gca.2022.07.010.
- King, A. J., Schofield, P. F., and Russell, S. S. 2017. Type 1 Aqueous Alteration in CM Carbonaceous Chondrites: Implications for the Evolution of Water-Rich Asteroids. Meteoritics & Planetary Science 52: 1197–1215. https://doi.org/10.1111/maps.12872.
- Kitazato, K., Milliken, R. E., Iwata, T., Abe, M., Ohtake, M., Matsuura, S., Arai, T., et al. 2019. The Surface Composition of Asteroid 162173 Ryugu from Hayabusa2 near-Infrared Spectroscopy. Science 364: 272–275. https://doi.org/10.1126/science.aav7432.
- Lauretta, D. S., Connolly, H. C., Jr., Aebersold, J. E., Alexander, C. M. O'D., Ballouz, R. L., Barnes, J. J., Bates, H. C., et al. 2024. Asteroid (101955) Bennu in the Laboratory: Properties of the Sample Collected by OSIRIS—REx. Meteoritics & Planetary Science 59: 2453–2486. https://doi.org/10.1111/maps.14227.
- Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A., Golish, D. R., Becker, K. J., Balram-Knutson, S. S., Barnouin, O. S., et al. 2019. The Unexpected Surface of Asteroid (101955) Bennu. Nature 568: 55–60. https://doi.org/10.1038/s41586-019-1033-6.
- Lentfort, S., Bischoff, A., Ebert, S., and Patzek, M. 2021. Classification of CM Chondrite Breccias—Implications for the Evaluation of Samples from the OSIRIS-REx and Hayabusa 2 Missions. Meteoritics & Planetary Science 56: 127–147. https://doi.org/10.1111/maps.13486.
- Nakamura, T., Matsumoto, M., Amano, K., Enokido, Y., Zolensky, M. E., Mikouchi, T., Genda, H., et al. 2023. Formation and Evolution of Carbonaceous Asteroid Ryugu: Direct Evidence from Returned Samples. Science 379: 1–14. https://doi.org/10.1126/science.abn8671.
- Oelkers, E. H. 1999. Chapter 12. A Comparison of Forsterite and Enstatite Dissolution Rates and Mechanisms. In Growth, Dissolution and Pattern Formation in Geosystems, edited by B. Jamtveit, and P. Meakin. Dordrecht: Kluwer Academic Publishers.
10.1007/978-94-015-9179-9_12 Google Scholar
- Osawa, T., Kagi, H., and Nagao, K. 2001. Mid-Infrared Transmission Spectra of Individual Antarctic Micrometeorites and Carbonaceous Chondrites. Antarctic Meteorite Research 14: 71–88.
- Pizzarello, S., Yarnes, C. T., and Cooper, G. 2020. The Aguas Zarcas (CM2) Meteorite: New Insights into Early Solar System Organic Chemistry. Meteoritics & Planetary Science 55: 1525–1538. https://doi.org/10.1111/maps.13532.
- Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H., and Wasson, J. T. 2007. Progressive Aqueous Alteration of CM Carbonaceous Chondrites. Geochimica et Cosmochimica Acta 71: 2361–2382. https://doi.org/10.1016/j.gca.2007.02.008.
- Sato, K., Miyamoto, M., and Zolensky, M. E. 1997. Absorption Bands near Three Micrometers in Diffuse Reflectance Spectra of Carbonaceous Chondrites: Comparison with Asteroids. Meteoritics & Planetary Science 32: 503–507. https://doi.org/10.1111/j.1945-5100.1997.tb01295.x.
- Schultz, C. D., and Milliken, R. E. 2025. The Curious Case of the Missing Mantle: How Carbonaceous Chondrites May Confound the Spectral Identification of Partially Differentiated Asteroids. Icarus 429: 116442. https://doi.org/10.1016/j.icarus.2024.116442.
- Schultz, C., Anzures, B. A., Milliken, R. E., Hiroi, T., and Robertson, K. 2023. Assessing the Spatial Variability of the ~3 μm OH/H2O Absorption Feature in CM2 Carbonaceous Chondrites. Meteoritics & Planetary Science 58: 170–194. https://doi.org/10.1111/maps.13946.
- Storz, J., Reitze, M. P., Stojic, A. N., Kerraouch, I., Bischoff, A., Hiesinger, H., and John, T. 2024. Micro-FTIR Reflectance Spectroscopy of Ryugu, CI Chondrites and Volatile-Rich Clasts—Comparing Spectral Features in the Mid-IR (2.5–16.5 μm) Region. Icarus 420: 116189. https://doi.org/10.1016/j.icarus.2024.116189.
- Suttle, M. D., King, A. J., Schofield, P. F., Bates, H., and Russell, S. S. 2021. The Aqueous Alteration of CM Chondrites, a Review. Geochimica et Cosmochimica Acta 299: 219–256. https://doi.org/10.1016/j.gca.2021.01.014.
- Takir, D., Emery, J. P., and McSween, H. Y. 2015. Toward an Understanding of Phyllosilicate Mineralogy in the Outer Main Asteroid Belt. Icarus 257: 185–193. https://doi.org/10.1016/j.icarus.2015.04.042.
- Takir, D., Emery, J. P., Mcsween, H. Y., Hibbitts, C. A., Clark, R. N., Pearson, N., and Wang, A. 2013. Nature and Degree of Aqueous Alteration in CM and CI Carbonaceous Chondrites. Meteoritics & Planetary Science 48: 1618–1637. https://doi.org/10.1111/maps.12171.
- Takir, D., Stockstill-Cahill, K. R., Hibbitts, C. A., and Nakauchi, Y. 2019. 3-μm Reflectance Spectroscopy of Carbonaceous Chondrites under Asteroid-like Conditions. Icarus 333: 243–251. https://doi.org/10.1016/j.icarus.2019.05.012.
- Tatsumi, E., Sugimoto, C., Riu, L., Sugita, S., Nakamura, T., Hiroi, T., Morota, T., et al. 2021. Collisional History of Ryugu's Parent Body from Bright Surface Boulders. Nature Astronomy 5: 39–45. https://doi.org/10.1038/s41550-020-1179-z.
- Villalon, K. L., Heck, P. R., Keating, K., Davis, A. M., and Stephan, T. 2020. GEMS-Like Material in Aguas Zarcas Interchondrule Matrix. 51st Lunar and Planetary Science Conference, abstract #2757.
- Wasklewica, T., Dorn, R. I., Clark, S., Hetrick, J., Pope, G., Liu, T., Krinsley, D. H., Dixon, J., Moore, R. B., and Clark, J. 1994. Olivine Does Not Necessarily Weather First. Singapore Journal of Tropical Geography 14: 72–80. https://doi.org/10.1111/j.1467-9493.1994.tb00225.x.
10.1111/j.1467-9493.1994.tb00225.x Google Scholar
- Watanabe, S., Hirabayashi, M., Hirata, N., Hirata, N., Noguchi, R., Shimaki, Y., Ikeda, H., et al. 2019. Hayabusa2 Arrives at the Carbonaceous Asteroid 162173 Ryugu—A Spinning Top-Shaped Rubble Pile. Science 364: 268–272. https://doi.org/10.1126/science.aav8032.
- Weiss, B. P., and Elkins-Tanton, L. T. 2013. Differentiated Planetesimals and the Parent Bodies of Chondrites. Annual Review of Earth and Planetary Sciences 41: 529–560. https://doi.org/10.1146/annurev-earth-040610-133520.
- Wogelius, R. A., and Walther, J. V. 1992. Olivine Dissolution Kinetics at Near-Surface Conditions. Chemical Geology 97: 101–112. https://doi.org/10.1016/0009-2541(92)90138-U.
- Zolotov, M. Y., and Mironenko, M. V. 2008. Early Alteration of Matrices in Parent Bodies of CI/CM Carbonaceous Chondrites: Kinetic-Thermodynamic Modeling. 39th Lunar and Planetary Science Conference, abstract #1998.