Melatonin secretion and metabolism in patients with hepatic encephalopathy
Cezary Chojnacki
Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
Search for more papers by this authorPatrycja Wachowska-Kelly
Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
Search for more papers by this authorJanusz Błasiak
Department of Molecular Genetics, University of Lodz, Lodz, Poland
Search for more papers by this authorRussel J Reiter
Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, Texas, USA
Search for more papers by this authorCorresponding Author
Jan Chojnacki
Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
Correspondence
Professor Jan Chojnacki, Department of Gastroenterology, Medical University of Lodz, 1 Haller's Square, 90-647 Lodz, Poland. Email: [email protected]
Search for more papers by this authorCezary Chojnacki
Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
Search for more papers by this authorPatrycja Wachowska-Kelly
Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
Search for more papers by this authorJanusz Błasiak
Department of Molecular Genetics, University of Lodz, Lodz, Poland
Search for more papers by this authorRussel J Reiter
Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, Texas, USA
Search for more papers by this authorCorresponding Author
Jan Chojnacki
Department of Gastroenterology, Medical University of Lodz, Lodz, Poland
Correspondence
Professor Jan Chojnacki, Department of Gastroenterology, Medical University of Lodz, 1 Haller's Square, 90-647 Lodz, Poland. Email: [email protected]
Search for more papers by this authorAbstract
Background and Aim
The rhythm of melatonin secretion and its blood level changes in cirrhotic patients, but the causes of these alterations have not been sufficiently appreciated.
The aim of study was to estimate the dependence between melatonin secretion and metabolism and the severity of hepatic encephalopathy.
Methods
The study included 75 alcoholic cirrhotic patients (A, B, C) with hepatic insufficiency and 25 healthy subjects (group K). Three groups of patients were identified, 25 patients each, with grade 1, 2, and 3 hepatic encephalopathy according to West-Haven Scale. Immunoenzymatic method was used to measure serum melatonin (at 02:00 h and 09:00 h) level and 6-sulfatoxymelatonin (6-HMS) excretion in the urine (during night and day).
Results
Nocturnal serum melatonin levels (pg/mL) in groups were: K—57.1 ± 11.4, A—38.5 ± 11.2, B—53.4 ± 17.9, C—79.5 ± 27.9 (P < 0.01); whereas diurnal levels were: K—10.9 ± 3.5, A—33.5 ± 12.0, B—53.8 ± 23.1, C—98.5 ± 34.6 (P < 0.01). Similar differences were found in the evaluation of 6-HMS excretion (μg/9 h) in urine at night: group K—23.4 ± 14.4, A–16.6 ± 5.4, B—14.3 ± 6.2 (P < 0.01), C—3.3 ± 1.5 (P < 0.001). Diurnal 6-HMS excretion (μg/15 h) was lower only in group C and it was respectively: K—6.9 ± 3.4, A–7.1 ± 1.7, B—7.6 ± 1.7, C—4.3 ± 2.2 (P < 0.001). Serum ammonia concentrations (μg/dL) were: group K—30.4 ± 8.9, A–51.8 ± 25.4 (P < 0.05), B—73.0 ± 29.8 (P < 0.001), C—107.5 ± 34.8 (P < 0.001). No correlation between melatonin and ammonia levels in all groups was found.
Conclusions
The elevated melatonin blood levels both at night and day may account for some of the clinical manifestations of hepatic encephalopathy (daytime sleepiness, fatigue).
References
- 1 Stehle JH, Saade A, Rawashdeh O et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 2011; 51: 17–43.
- 2 Reiter RJ, Tan DX. What constitutes a physiological concentration of melatonin? J. Pineal Res. 2003; 34: 79–80.
- 3 Venegas C, García JA, Escames G et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012; 52: 217–227.
- 4 Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ. Significance of high levels of endogenous melatonin in mammalian cerebrospinal fluid and in the central nervous system. Curr. Neuropharmacol. 2010; 8: 162–167.
- 5 Raikhlin NT, Kvetnoy IM. Melatonin and enterochromaffine cells. Acta Histochem. 1976; 55: 19–24.
- 6 Huether G, Poeggeler B, Reimer A, George A. Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci. 1992; 51: 945–953.
- 7 Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci. 2002; 47: 2336–2348.
- 8 Kvetnoy IM, Ingel IE, Kvetnaia TV et al. Gastrointestinal melatonin: cellular identification and biological role. Neuro Endocrinol. Lett. 2002; 23: 121–132.
- 9 Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Bandyopadhyay D. Neurally-mediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract. J. Physiol. Pharmacol. 2003; 54: 113–125.
- 10 Gibson P, Gill JH, Khan PA et al. Cytochrome P450 1B1 (CYP1B1) is overexpressed in human colon adenocarcinomas relative to normal colon: implications for drug development. Mol. Cancer Ther. 2003; 2: 527–534.
- 11 Bubenik GA, Pang SF, Cockshut JR et al. Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep. J. Pineal Res. 2000; 28: 9–15.
- 12 Lane EA, Moss HB. Pharmacokinetics of melatonin in man: first pass hepatic metabolism. J. Clin. Endocrinol. Metab. 1985; 61: 1214–1216.
- 13 Facciolá G, Hidestrand M, von Bahr C, Tybring G. Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur. J. Clin. Pharmacol. 2001; 56: 881–888.
- 14 Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab. Dispos. 2005; 33: 489–494.
- 15 Tan D, Manchester LC, Reiter RJ, Qi W, Hanes MA, Farley NJ. High physiological levels of melatonin in the bile of mammals. Life Sci. 1999; 65: 2523–2529.
- 16 Messner M, Huether G, Lorf T, Ramadori G, Schwörer H. Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci. 2001; 69: 543–551.
- 17 Reiter RJ, Tan DX, Cabrera J et al. The oxidant/antioxidant network: role of melatonin. Biol. Signals Recept. 1999; 8: 56–63.
- 18 Koc M, Taysi S, Buyukokuroglu ME, Bakan N. Melatonin protects rat liver against irradiation-induced oxidative injury. J. Radiat. Res. 2003; 44: 211–215.
- 19 Sewerynek E, Reiter RJ, Melchiorri D, Ortiz GG, Lewinski A. Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin. Hepatogastroenterology 1996; 43: 898–905.
- 20 Cruz A, Padillo FJ, Torres E et al. Melatonin prevents experimental liver cirrhosis induced by thioacetamide in rats. J. Pineal Res. 2005; 39: 143–150.
- 21 Zaoualí MA, Reiter RJ, Padrissa-Altés S et al. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. J. Pineal Res. 2011; 50: 213–221.
- 22 Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit. Rev. Biochem. Mol. Biol. 2009; 44: 175–200.
- 23 Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 2011; 51: 1–16.
- 24 Hong RT, Xu JM, Mei Q. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J. Gastroenterol. 2009; 15: 1452–1458.
- 25 Tahan G, Akin H, Aydogan F et al. Melatonin ameliorates liver fibrosis induced by bile-duct ligation in rats. Can. J. Surg. 2010; 53: 313–318.
- 26 Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J. Pineal Res. 2006; 41: 79–84.
- 27 Cichoz-Lach H, Celinski K, Konturek PC, Konturek SJ, Slomka M. The effects of L-tryptophan and melatonin on selected biochemical parameters in patients with steatohepatitis. J. Physiol. Pharmacol. 2010; 61: 577–580.
- 28 Gonciarz M, Gonciarz Z, Bielanski W et al. The pilot study of 3-month course of melatonin treatment of patients with nonalcoholic steatohepatitis: effect on plasma levels of liver enzymes, lipids and melatonin. J. Physiol. Pharmacol. 2010; 61: 705–710.
- 29 Nickkholgh A, Schneider H, Sobirey M et al. The use of high-dose melatonin in liver resection is safe: first clinical experience. J. Pineal Res. 2011; 50: 381–388.
- 30 Iguchi H, Kato KI, Ibayashi H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J. Clin. Endocrinol. Metab. 1982; 54: 1025–1027.
- 31 Velissaris D, Karamouzos V, Polychronopoulos P, Karanikolas M. Chronotypology and melatonin alterations in minimal hepatic encephalopathy. J. Circadian Rhythms 2009; 7: 6–11.
- 32 Steindl PE, Finn B, Bendok B, Rothke S, Zee PC, Blei AT. Changes in the 24-hour rhythm of plasma melatonin in patients with liver cirrhosis—relation to sleep architecture. Wien. Klin. Wochenschr. 1997; 109: 741–746.
- 33 Ardizzi A, Grugni G, Saglietti G, Morabito F. Circadian rhythm of melatonin in liver cirrhosis. Minerva Med. 1998; 89: 1–4.
- 34 Montagnese S, Middleton B, Mani AR, Skene DJ, Morgan MY. On the origin and the consequences of circadian abnormalities in patients with cirrhosis. Am. J. Gastroenterol. 2010; 105: 1773–1781.
- 35 Steindl PE, Finn B, Bendok B, Rothke S, Zee PC, Blei AT. Disruption of the diurnal rhythm of plasma melatonin in eirrhosis. Ann. Intern. Med. 1995; 123: 274–277.
- 36 Zee PC, Mehta R, Turek FW, Blei AT. Portacaval anastomosis disrupts circadian locomotor activity and pineal melatonin rhythms in rats. Brain Res. 1991; 560: 17–22.
- 37 Coy DL, Mehta R, Zee P, Salchli F, Turek FW, Blei AT. Portal-systemic shunting and the disruption of circadian locomotor activity in the rat. Gastroenterology 1992; 103: 222–228.
- 38 Finn B, Shah V, Gottstein J. Neomycin improves a disrupted circadian rhythm in rats after portacaval anastomosis. Hepatogastroenterolgy 1993; 40: 33 (A).
- 39 Ducis J. Effect of ammonia and R05-4864 on melatonin release in pineal. J. Neurochem. 1994; 62: A–37.
- 40 Steindl PE, Finn B, Bendok B, Rothke S, Zee PC, Blei AT. Disruption of the diurnal rhythm of plasma melatonin in cirrhosis. Ann. Intern. Med. 1995; 123: 274–277.
- 41 Lewy AJ, Ahmed S, Jackson JM, Sack RL. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol. Int. 1992; 9: 380–392.
- 42 Celinski K, Konturek PC, Slomka M et al. Altered basal and postprandial plasma melatonin, gastrin, ghrelin, leptin and insulin in patients with liver cirrhosis and portal hypertension without and with oral administration of melatonin or tryptophan. J. Pineal Res. 2009; 46: 408–414.
- 43 Suman A, Barnes DS, Zein NN, Levinthal GN, Connor JT, Carey WD. Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of Child-Pugh and MELD scores. Clin. Gastroenterol. Hepatol. 2004; 2: 719–723.
- 44 Montagnese S, Amodio P, Morgan MY. Methods for diagnosing hepatic encephalopathy in patients with cirrhosis: a multidimensional approach. Metab. Brain Dis. 2004; 19: 281–312.
- 45 Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002; 35: 716–721.
- 46 Butterworth RF. The neurobiology of hepatic encephalopathy. Semin. Liver Dis. 1996; 16: 235–244.
- 47 Weissenborn K, Ennen JC, Schomerus H, Rückert N, Hecker H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol. 2001; 34: 768–773.
- 48 Ortiz M, Córdoba J, Jacas C, Flavià M, Esteban R, Guardia J. Neuropsychological abnormalities in cirrhosis include learning impairment. J. Hepatol. 2006; 44: 104–110.
- 49 Xiong YF, Chen Q, Chen J, Zhou J, Wang HX. Melatonin reduces the impairment of axonal transport and axonopathy induced by calyculin A. J. Pineal Res. 2011; 50: 319–327.
- 50 Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse. J. Pineal Res. 2011; 50: 97–109.