Application of artificial intelligence techniques in meat processing: A review
Mingyu Wang
College of Information and Electrical Engineering, China Agricultural University, Beijing, PR China
Search for more papers by this authorCorresponding Author
Xinxing Li
College of Information and Electrical Engineering, China Agricultural University, Beijing, PR China
Nanchang Institute of Technology, Nanchang, PR China
Correspondence
Xinxing Li, China Agricultural University, Beijing 100083, PR China.
Email: [email protected]
Search for more papers by this authorMingyu Wang
College of Information and Electrical Engineering, China Agricultural University, Beijing, PR China
Search for more papers by this authorCorresponding Author
Xinxing Li
College of Information and Electrical Engineering, China Agricultural University, Beijing, PR China
Nanchang Institute of Technology, Nanchang, PR China
Correspondence
Xinxing Li, China Agricultural University, Beijing 100083, PR China.
Email: [email protected]
Search for more papers by this authorAbstract
The field of meat processing plays a critical role in the food industry and has seen increasing adoption of artificial intelligence (AI) technology with rapid technological advancements. AI technology has tremendous potential for enhancing production efficiency and product quality in meat processing. However, further research and exploration are necessary to tackle the challenges posed by the use of AI technology. This article details the implementation of AI technology in meat processing, focusing on carcass classification, automation and intelligent processing, and meat-quality detection. We aim to provide inspiration to researchers and industry professionals and promote the advancement of AI technology in the meat processing sector.
Practical applications
Our review article showcases the potential industrial applications of artificial intelligence (AI) techniques in the meat processing industry. AI technology can greatly improve production efficiency and product quality in meat processing. By implementing AI algorithms, meat processors can accurately classify carcasses, automate various processing tasks, and detect meat quality with higher accuracy. These advancements can lead to increased profitability and improved food safety in the industry. We hope to provide valuable insights for researchers and industry professionals, encouraging them to further explore and adopt AI technology in the meat processing sector.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- Adesokan, H., & Raji, A. O. Q. (2014). Safe meat-handling knowledge, attitudes and practices of private and government meat processing plants' workers: Implications for future policy. Journal of Preventive Medicine and Hygiene, 55, 10–16.
- Alaiz, R., & Parnell, A. (2020). A machine learning approach for lamb meat quality assessment using FTIR spectra. IEEE Access, 8, 52385–52394. https://doi.org/10.1109/ACCESS.2020.2974623
10.1109/ACCESS.2020.2974623 Google Scholar
- Alempijevic, A., Vidal-Calleja, T., Falque, R., Quin, P., Toohey, E., Walmsley, B., & McPhee, M. (2021). Lean meat yield estimation using a prototype 3D imaging approach. Meat Science, 181, 108470. https://doi.org/10.1016/j.meatsci.2021.108470
- Alshejari, A., & Kodogiannis, V. S. (2017). An intelligent decision support system for the detection of meat spoilage using multispectral images. Neural Computing and Applications, 28(12), 3903–3920. https://doi.org/10.1007/s00521-016-2296-6
- Barbut, S. (2014). Review: Automation and meat quality-global challenges. Meat Science, 96(1), 335–345. https://doi.org/10.1016/j.meatsci.2013.07.002
- Barbut, S. (2020). Meat Industry 4.0: A distant future? Animal Frontiers, 10(4), 38–47. https://doi.org/10.1093/af/vfaa038
- Batista, A. C., Santos, V., Afonso, J., Guedes, C., Azevedo, J., Teixeira, A., & Silva, S. (2021). Evaluation of an image analysis approach to predicting primal cuts and lean in light lamb carcasses. Animals, 11(5), 1368.
- Blagoveshchenskiy, I. G., Blagoveshchenskiy, V. G., Besfamilnaya, E. M., & Sumerin, V. A. (2020). Development of databases of intelligent expert systems for automatic control of product quality indicators. Journal of Physics: Conference Series, 1705(1), 012019. https://doi.org/10.1088/1742-6596/1705/1/012019
10.1088/1742-6596/1705/1/012019 Google Scholar
- Casey, N. H., Niekerk, W. A., & Webb, E. C. (2003). Goat meat. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition ( 2nd ed., pp. 2937–2944). Academic Press.
10.1016/B0-12-227055-X/00564-2 Google Scholar
- Chandraratne, M. R., Kulasiri, D., & Samarasinghe, S. (2007). Classification of lamb carcass using machine vision: Comparison of statistical and neural network analyses. Journal of Food Engineering, 82(1), 26–34. https://doi.org/10.1016/j.jfoodeng.2007.01.003
- Chao, K., Yang, C. C., Chen, Y. R., Kim, M. S., & Chan, D. E. (2007). Hyperspectral-multispectral line-scan imaging system for automated poultry carcass inspection applications for food safety. Poultry Science, 86(11), 2450–2460. https://doi.org/10.3382/ps.2006-00467
- Chowdhury, E. U., & Morey, A. (2020). Application of optical technologies in the US poultry slaughter facilities for the detection of poultry carcass condemnation. British Poultry Science, 61(6), 646–652. https://doi.org/10.1080/00071668.2020.1792833
- De La Iglesia, D. H., González, G. V., García, M. V., Rivero, A. J. L., & De Paz, J. F. (2020). Non-invasive automatic beef carcass classification based on sensor network and image analysis. Future Generation Computer Systems, 113, 318–328. https://doi.org/10.1016/j.future.2020.06.055
- Delgado-Pando, G., Allen, P., Troy, D. J., & McDonnell, C. K. (2021). Objective carcass measurement technologies: Latest developments and future trends. Trends in Food Science & Technology, 111, 771–782.
- Demir, K. A., Döven, G., & Sezen, B. (2019). Industry 5.0 and human-robot co-working. Procedia Computer Science, 158, 688–695. https://doi.org/10.1016/j.procs.2019.09.104
10.1016/j.procs.2019.09.104 Google Scholar
- Esper, I. D. M., From, P. J., & Mason, A. (2021). Robotisation and intelligent systems in abattoirs. Trends in Food Science & Technology, 108, 214–222.
- Gardner, G. E., Apps, R., McColl, R., & Craigie, C. R. (2021). Objective measurement technologies for transforming the Australian & New Zealand livestock industries. Meat Science, 179, 108556.
- Girolami, A., Napolitano, F., Faraone, D., & Braghieri, A. (2013). Measurement of meat color using a computer vision system. Meat Science, 93(1), 111–118. https://doi.org/10.1016/j.meatsci.2012.08.010
- Gonçalves, D. N., Weber, V. A. d. M., Pistori, J. G. B., Gomes, R. d. C., de Araujo, A. V., Pereira, M. F., Gonçalves, W. N., & Pistori, H. (2021). Carcass image segmentation using CNN-based methods. Information Processing in Agriculture, 8(4), 560–572. https://doi.org/10.1016/j.inpa.2020.11.004
10.1016/j.inpa.2020.11.004 Google Scholar
- Górska-Horczyczak, E., Horczyczak, M., Guzek, D., Wojtasik-Kalinowska, I., & Wierzbicka, A. (2017). Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork. Food Control, 73, 237–244.
- Green, S. A., Billinghurst, M., Chen, X., & Chase, J. G. (2008). Human-robot collaboration: A literature review and augmented reality approach in design. International Journal of Advanced Robotic Systems, 5(1), 1. https://doi.org/10.5772/5664
- Grujić, R. D. (2010). Meat in human nutrition. Quality of Life (Banja Luka).
10.7251/QOL1001016G Google Scholar
- Hoashi, H., Joutou, T., & Yanai, K. (2010). Image recognition of 85 food categories by feature fusion. Paper presented at the 2010 IEEE International Symposium on Multimedia, 13–15 December 2010. Quality of Life (Banja Luka).
- Huang, X., Xu, H., Wu, L., Dai, H., Yao, L., & Han, F. (2016). A data fusion detection method for fish freshness based on computer vision and near-infrared spectroscopy. Analytical Methods, 8(14), 2929–2935. https://doi.org/10.1039/C5AY03005F
- Kang, R., Yang, K., Xia Zhang, X., Wu, W., & Jie Chen, K. (2016). Development of online detection and processing system for contaminants on chicken carcass surface. Applied Engineering in Agriculture, 32(1), 133–139. https://doi.org/10.13031/aea.32.11200
- Kodogiannis, V. S., & Alshejari, A. (2016). Neuro-fuzzy based identification of meat spoilage using an electronic nose. Paper presented at the 2016 IEEE 8th International Conference on Intelligent Systems (IS), 4–6 September 2016.
- Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A. J., & Wiskott, L. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871. https://doi.org/10.1109/TPAMI.2012.272
- Kvam, J., & Kongsro, J. (2017). In vivo prediction of intramuscular fat using ultrasound and deep learning. Computers and Electronics in Agriculture, 142, 521–523. https://doi.org/10.1016/j.compag.2017.11.020
- Linkens, D. A., & Chen, M. (1995). Expert control systems—I. Concepts, characteristics and issues. Engineering Applications of Artificial Intelligence, 8(4), 413–421.
- Liu, P. R., Lu, L., Zhang, J. Y., Huo, T. T., Liu, S. X., & Ye, Z. W. (2021). Application of artificial intelligence in medicine: An overview. Current Medical Science, 41(6), 1105–1115. https://doi.org/10.1007/s11596-021-2474-3
- Maes, D., Sibila, M., Pieters, M., Haesebrouck, F., Segalés, J., & de Oliveira, L. G. (2023). Review on the methodology to assess respiratory tract lesions in pigs and their production impact. Veterinary Research, 54(1), 8. https://doi.org/10.1186/s13567-023-01136-2
- Mason, A., Esper, I., Korostynska, O., Haiddegger, T., Popov, A., Christensen, L. B., & Alvseike, O. (2021). The Meat Factory Cell: A new way of thinking for meat producers. Paper Presented at the 2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI), 18–20 November 2021.
- Mason, A., Romanov, D., Cordova-Lopez, L. E., Ross, S., & Korostynska, O. (2022). Smart knife: Technological advances towards smart cutting tools in meat industry automation. Sensor Review, 42(1), 155–163. https://doi.org/10.1108/SR-09-2021-0315
- Matthews, D., Pabiou, T., Evans, R. D., Beder, C., & Daly, A. (2022). Predicting carcass cut yields in cattle from digital images using artificial intelligence. Meat Science, 184, 108671. https://doi.org/10.1016/j.meatsci.2021.108671
- Medathati, N. V. K., Neumann, H., Masson, G. S., & Kornprobst, P. (2016). Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision. Computer Vision and Image Understanding, 150, 1–30.
- Ming, Z. Y., Chen, J., Cao, Y., Forde, C., Ngo, C. W., & Chua, T. S. (2018). Food Photo Recognition for Dietary Tracking: System and Experiment. In: K. Schoeffmann (Ed.), MultiMedia modeling. MMM 2018. Lecture Notes in Computer Science, Vol. 10705. Springer. https://doi.org/10.1007/978-3-319-73600-6_12
- Mulvenna, M. D., Woodham, C., & Gregg, J. B. (1991). Artificial intelligence applications in geology: A case study with explorer. Paper Presented at the AI and Cognitive Science ‘90, London.
- Ndob, A. M., & Lebert, A. (2017). Prediction of pH and aw of pork meat by a thermodynamic model: New developments. Meat Science, 138, 59–67.
- OECD, Food and Agriculture Organization of the United Nations. (2023). OECD-FAO Agricultural Outlook 2023-2032. OECD Publishing.
- Pabiou, T., Fikse, W. F., Cromie, A. R., Keane, M. G., Näsholm, A., & Berry, D. P. (2011). Use of digital images to predict carcass cut yields in cattle. Livestock Science, 137(1), 130–140. https://doi.org/10.1016/j.livsci.2010.10.012
- Raj, A., Jayaram, R., Dev, S., & Ravikumar, S. (2013). A review on recent advances in meat processing. International Journal of Current Microbiology and Applied Biosciences, 2, 169–176.
- Russell, S., & Norvig, P. (2004). Artificial intelligence— A modern approach. Tsinghua University Press.
- Seaton, M. (2022). Lessons in automation of meat processing. Animal Frontiers, 12(2), 25–31. https://doi.org/10.1093/af/vfac022
- Segura, J., Aalhus, J. L., Prieto, N., Larsen, I. L., Juárez, M., & López-Campos, Ó. (2021). Carcass and primal composition predictions using camera vision systems (CVS) and dual-energy X-ray absorptiometry (DXA). Technologies on Mature Cows, 10(5), 1118.
- Segura, J., Aalhus, J. L., Prieto, N., Zawadski, S., Scott, H., & López-Campos, Ó. (2023). Prediction of primal and retail cut weights, tissue composition and yields of youthful cattle carcasses using computer vision systems; whole carcass camera and/or ribeye camera. Meat Science, 199, 109120. https://doi.org/10.1016/j.meatsci.2023.109120
- Shahinfar, S., Kelman, K., & Kahn, L. (2018). Prediction of sheep carcass traits from early-life records using machine learning. Computers and Electronics in Agriculture, 156, 159–177.
- Simmons, N. J., Daly, C. C., Mudford, C. R., Richards, I., Jarvis, G., & Pleiter, H. (2006). Integrated technologies to enhance meat quality—An Australasian perspective. Meat Science, 74(1), 172–179. https://doi.org/10.1016/j.meatsci.2006.05.007
- Sun, X., Young, J., Liu, J. H., & Newman, D. (2018). Prediction of pork loin quality using online computer vision system and artificial intelligence model. Meat Science, 140, 72–77. https://doi.org/10.1016/j.meatsci.2018.03.005
- Sylvio, B., Da Costa Barbon, A. P. A., Mantovani, R. G., & Barbin, D. F. (2018). Machine learning applied to near-infrared spectra for chicken meat classification. Journal of Spectroscopy, 2018, 8949741.
- Taichi, J., & Keiji, Y. (2009). A food image recognition system with multiple kernel learning. Paper Presented at the 2009 16th IEEE International Conference on Image Processing (ICIP), 7–10 November 2009.
- Tanno, R., Okamoto, K., & Yanai, K. (2016). DeepFoodCam: A DCNN-based real-time mobile food recognition system. Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management.
10.1145/2986035.2986044 Google Scholar
- Vajdi, M., Varidi, M. J., Varidi, M., & Mohebbi, M. (2019). Using electronic nose to recognize fish spoilage with an optimum classifier. Journal of Food Measurement and Characterization, 13, 1205–1217.
- Wang, H. H. (2022). The perspective of meat and meat-alternative consumption in China. Meat Science, 194, 108982. https://doi.org/10.1016/j.meatsci.2022.108982
- Wanliang, W. (2011). Introduction to artificial intelligence. China Higher Education Press.
- Wu, W., Chen, G. Y., Wu, M. Q., Yu, Z. W., & Chen, K. J. (2017). Detection of diluted contaminants on chicken carcasses using a two-dimensional scatter plot based on a two-dimensional hyperspectral correlation spectrum. Applied Optics, 56(9), D72–D78. https://doi.org/10.1364/ao.56.000d72
- Xiaoshan, Z., & Weiwei, L. (2021). Research on the application of artificial intelligence technology in food processing. Meat Research, 35(2), I0034.
- Xu, J. L., & Sun, D. W. J. I. J. o. R.-r. I. D. F. (2017). Identification of freezer burn on frozen salmon surface using hyperspectral imaging and computer vision combined with machine learning algorithm. International Journal of Refrigeration, 74, 151–164.
- Yang, C.-C., Chao, K., & Chen, Y.-R. (2005). Development of multispectral image processing algorithms for identification of wholesome, septicemic, and inflammatory process chickens. Journal of Food Engineering, 69(2), 225–234. https://doi.org/10.1016/j.jfoodeng.2004.07.021
- Yang, C.-C., Chao, K., & Kim, M. S. (2009). Machine vision system for online inspection of freshly slaughtered chickens. Sensing and Instrumentation for Food Quality and Safety, 3(1), 70–80. https://doi.org/10.1007/s11694-008-9067-8
10.1007/s11694-008-9067-8 Google Scholar
- Yang, Y., Zhang, K., & Chai, Y. (2010). An implementation of intelligent monitoring system for food processing. Paper Presented at the 2010 8th World Congress on Intelligent Control and Automation, 7–9 July 2010.
- Zare, D., & Ghazali, H. M. (2017). Assessing the quality of sardine based on biogenic amines using a fuzzy logic model. Food Chemistry, 221, 936–943. https://doi.org/10.1016/j.foodchem.2016.11.071
- Zhu, F., Bosch, M., Schap, T., Khanna, N., Ebert, D. S., Boushey, C. J., & Delp, E. J. (2011). Segmentation assisted food classification for dietary assessment. Proceedings of SPIE the International Society for Optical Engineering, 7873, 78730b. https://doi.org/10.1117/12.877036