Bioactive phenolic components and potential health effects of chestnut shell: A review
Meiyi Hu
College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
Contribution: Conceptualization, Data curation, Formal analysis, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Xiaokuan Yang
College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
Correspondence
Xiaokuan Yang, College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China.
Email: [email protected]
Contribution: Project administration, Supervision, Writing - review & editing
Search for more papers by this authorXuedong Chang
College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
Contribution: Project administration, Resources, Software, Supervision
Search for more papers by this authorMeiyi Hu
College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
Contribution: Conceptualization, Data curation, Formal analysis, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Xiaokuan Yang
College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
Correspondence
Xiaokuan Yang, College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China.
Email: [email protected]
Contribution: Project administration, Supervision, Writing - review & editing
Search for more papers by this authorXuedong Chang
College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao City, China
Contribution: Project administration, Resources, Software, Supervision
Search for more papers by this authorAbstract
Chestnut kernels are often used for direct consumption; or processed to produce marron glacé, chestnut purée, and gluten-free products, while chestnut by-products (inner shell and outer shell) are treated as waste residues. Many in vivo and in vitro studies have proved how chestnut shell extract functions as an antioxidant and exhibits anticancer, anti-inflammatory, antidiabetic, and anti-obesity activities. This review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and reported potential health effects. The aim is to have a better understanding of the functional active ingredients in chestnut shells and their value-added uses, to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries.
Practical applications
In recent years, chestnut shells have become a hot research topic because of their rich bioactive ingredients. Due to the large amount of phenolic compounds in chestnut shells and their potential health functions (antioxidant, anticancer, antibacterial, anti-inflammatory, hypoglycemic, and treatment of obesity), extracts of chestnut shells have high biological value in the treatment of diseases. Therefore, this review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and the potential health effects of these compounds. The aim of this review is to better understand the functional, active ingredients in chestnut shells and their value-added uses, and to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries.
CONFLICT OF INTEREST
The authors declared that they have no conflict of interest.
REFERENCES
- Agarwal, C., Sharma, Y., & Agarwal, R. (2000). Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: Modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Molecular Carcinogenesis, 28(3), 129–138. https://doi.org/10.1002/1098-2744(200007)28:3<129:AID-MC1>3.0.CO;2-0.
- Aires, A., Carvalho, R., & Saavedra, M. J. (2016). Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Management, 48, 457–464. https://doi.org/10.1016/j.wasman.2015.11.019
- Al-Farsi, M. A., & Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chemistry, 108(3), 977–985. https://doi.org/10.1016/j.foodchem.2007.12.009
- Amakura, Y., Okada, M., Tsuji, S., & Tonogai, Y. (2000). High-performance liquid chromatographic determination with photodiode array detection of ellagic acid in fresh and processed fruits. Journal of Chromatography A, 896, 87–93. https://doi.org/10.1016/S0021-9673(00)00414-3
- Amin, A., Hamza, A. A., Bajbouj, K., Ashraf, S. S., & Daoud, S. (2011). Saffron: A potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology, 54(3), 857–867. https://doi.org/10.1002/hep.24433
- Antov, M. G., & Dordevic, T. R. (2017). Environmental-friendly technologies for the production of antioxidant xylooligosaccharides from wheat chaff. Food Chemistry, 235, 175–180. https://doi.org/10.1016/j.foodchem.2017.05.058
- Azmir, J., Zaidul, I., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N., & Omar, A. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
- Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540–27557. https://doi.org/10.1039/c5ra01911g
- Barreira, J., Ferreira, I., Oliveira, M., & Pereira, J. (2008). Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chemistry, 107(3), 1106–1113. https://doi.org/10.1016/j.foodchem.2007.09.030
- Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2010). Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Science and Technology International, 16(3), 209–216. https://doi.org/10.1177/1082013209353983
- Bodoira, R., & Maestri, D. (2020). Phenolic compounds from nuts: extraction, chemical profiles, and bioactivity. Journal of Agriculture and Food Chemistry, 68(4), 927–942. https://doi.org/10.1021/acs.jafc.9b07160
- Bortner, C. D., Oldenburg, N. B. E., & Cidlowski, J. A. (1995). The role of DNA fragmentation in apoptosis. Trends in Cell Biology, 5(1), 21–26. https://doi.org/10.1016/S0962-8924(00)88932-1.
- Cacciola, N. A., Cerrato, A., Capriotti, A. L., Cavaliere, C., D’Apolito, M., Montone, C. M., Piovesana, S., Squillaci, G., Peluso, G., & Laganà, A. (2020). Untargeted characterization of chestnut (Castanea sativa Mill.) shell polyphenol extract: A valued bioresource for prostate cancer cell growth inhibition. Molecules, 25(12), 2730. https://doi.org/10.3390/molecules25122730
- Cacciola, N. A., Squillaci, G., D’Apolito, M., Petillo, O., Veraldi, F., La Cara, F., Peluso, G., Margarucci, S., & Morana, A. (2019). Castanea sativa Mill. shells aqueous extract exhibits anticancer properties inducing cytotoxic and pro-apoptotic effects. Molecules, 24(18), 3401. https://doi.org/10.3390/molecules24183401
- Cencic, A., & Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2(6), 611–625. https://doi.org/10.3390/nu2060611
- Cerulli, A., Napolitano, A., Masullo, M., Hosek, J., Pizza, C., & Piacente, S. (2020). Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MS(n) rationalization of tannins. Food Research International, 129, 108787. https://doi.org/10.1016/j.foodres.2019.108787
- Chi, Y. S., Heo, M. Y., Chung, J. H., Jo, B. K., & Kim, H. P. (2002). Effects of the chestnut inner shell extract on the expression of adhesion molecules, fibronectin and vitronectin, of skin fibroblasts in culture. Archives of Pharmacal Research, 25(4), 469–474. https://doi.org/10.1007/BF02976604.
- Chung, W. G., Miranda, C. L., Stevens, J. F., & Maier, C. S. (2009). Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species. Food and Chemical Toxicology, 47(4), 827–836. https://doi.org/10.1016/j.fct.2009.01.015
- Costa-Trigo, I., Otero-Penedo, P., Outeirino, D., Paz, A., & Dominguez, J. M. (2019). Valorization of chestnut (Castanea sativa) residues: Characterization of different materials and optimization of the acid-hydrolysis of chestnut burrs for the elaboration of culture broths. Waste Management, 87, 472–484. https://doi.org/10.1016/j.wasman.2019.02.028
- Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., Tešić, Ž., Mašković, P., Soares, C., Fatima Barroso, M., Delerue-Matos, C., & Đurović, S. (2019). The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chemistry, 271, 328–337. https://doi.org/10.1016/j.foodchem.2018.07.154
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313
- Danica Ramljak, L. J. R., Metheny-Barlow, L. J., Thompson, N., Knezevic, V., Galperin, M., Ramesh, A., & Dickson, R. B. (2005). Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells. Molecular Cancer Therapeutics, 4(4), 537–546.
- de Vasconcelos, M. D. C. B. M., Bennett, R. N., Quideau, S., Jacquet, R., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010). Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Industrial Crops and Products, 31(2), 301–311. https://doi.org/10.1016/j.indcrop.2009.11.008
- De Vasconcelos, M. C., Bennett, R. N., Rosa, E. A., & Ferreira-Cardoso, J. V. (2010). Composition of European chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. Journal of the Science of Food and Agriculture, 90(10), 1578–1589. https://doi.org/10.1002/jsfa.4016
- Duan, Y., Ke, J., Zhang, H., He, Y., Sun, G., & Sun, X. (2014). Autophagic cell death of human hepatoma G2 cells mediated by procyanidins from Castanea mollissima Bl. Shell-induced reactive oxygen species generation. Chemico-Biological Interactions, 224, 13–23. https://doi.org/10.1016/j.cbi.2014.09.021
- Echegaray, N., Gómez, B., Barba, F. J., Franco, D., Estévez, M., Carballo, J., Marszałek, K., & Lorenzo, J. M. (2018). Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends in Food Science & Technology, 82, 110–121. https://doi.org/10.1016/j.tifs.2018.10.005
- Ertürk, Ü., Mert, C., & Soylu, A. (2006). Chemical composition of fruits of some important chestnut cultivars. Brazilian Archives of Biology and Technology, 49, 183–188. https://doi.org/10.1590/S1516-89132006000300001
- Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C. I., Angioni, A., Dessi, S., Marzouki, N., & Cabras, P. (2007). Antimicrobial activity of tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. Journal of Agriculture and Food Chemistry, 55(3), 963–969.
- Fei, W., Xuan, Y., Jian, X., Yue, W., Yuejun, Y., Yu, J., Huifang, X., Yuancai, L., Yifu, Y., & Xiangwei, Z. (2019). One new phenolic compound from Castanea mollissima shells and its suppression of hepatomacell proliferation and inflammation by inhibiting NF-kappaB pathway. International Journal of Molecular Sciences, 20, 466. https://doi.org/10.3390/ijms20030466
- Fernández-Agulló, A., Freire, M. S., Antorrena, G., Pereira, J. A., & González-Álvarez, J. (2014). Effect of the extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) Bur and shell. Separation Science and Technology, 49(2), 267–277. https://doi.org/10.1080/01496395.2013.838264
- Gao, N., Budhraja, A., Cheng, S., Yao, H., Zhang, Z., & Shi, X. (2009). Induction of apoptosis in human leukemia cells by grape seed extract occurs via activation of c-Jun NH2-terminal kinase. Clinical Cancer Research, 15(1), 140–149. https://doi.org/10.1158/1078-0432.CCR-08-1447
- Gomes, A., Fernandes, E., Silva, A. M., Santos, C. M., Pinto, D. C., Cavaleiro, J. A., & Lima, J. L. (2007). 2-Styrylchromones: Novel strong scavengers of reactive oxygen and nitrogen species. Bioorganic & Medicinal Chemistry, 15(18), 6027–6036. https://doi.org/10.1016/j.bmc.2007.06.046
- Gomez-Maqueo, A., Escobedo-Avellaneda, Z., & Welti-Chanes, J. (2020). Phenolic compounds in mesoamerican fruits-characterization, health potential and processing with innovative technologies. International Journal of Molecular Sciences, 21(21), 8357. https://doi.org/10.3390/ijms21218357
- Guralp, O. (2014). Effects of vitamin E on bone remodeling in perimenopausal women: Mini review. Maturitas, 79(4), 476–480. https://doi.org/10.1016/j.maturitas.2014.08.012
- Hassasroudsari, M., Chang, P., Pegg, R., & Tyler, R. (2009). Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chemistry, 114(2), 717–726. https://doi.org/10.1016/j.foodchem.2008.09.097
- Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770–776.
- Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. https://doi.org/10.3322/caac.20107
- Jiang, Y.-Y., Yang, R. I., Wang, H.-J., Huang, H., Wu, D. I., Tashiro, S.-I., Onodera, S., & Ikejima, T. (2011). Mechanism of autophagy induction and role of autophagy in antagonizing mitomycin C-induced cell apoptosis in silibinin treated human melanoma A375–S2 cells. European Journal of Pharmacology, 659(1), 7–14. https://doi.org/10.1016/j.ejphar.2010.12.043
- Jung, B. S., Lee, N. K., Na, D. S., Yu, H. H., & Paik, H. D. (2016). Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents. Journal of the Science of Food and Agriculture, 96(6), 2097–2102. https://doi.org/10.1002/jsfa.7324
- Jung, K., Everson, R. J., Joshi, B., Bulsara, P. A., Upasani, R., & Clarke, M. J. (2017). Structure-function relationship of phenolic antioxidants in topical skin health products. International Journal of Cosmetic Science, 39(2), 217–223. https://doi.org/10.1111/ics.12367
- Jung, S. H., Lee, G. B., Ryu, Y., Cui, L., Lee, H. M., Kim, J., Kim, B., & Won, K. J. (2019). Inhibitory effects of scoparone from chestnut inner shell on platelet-derived growth factor-BB-induced vascular smooth muscle cell migration and vascular neointima hyperplasia. Journal of the Science of Food and Agriculture, 99(9), 4397–4406. https://doi.org/10.1002/jsfa.9674
- Kang, H. (2014). Inhibition of lipopolysaccharide-induced neuroinflammatory events in Bv-2 microglia by chestnut peel extract. Tropical Journal of Pharmaceutical Research, 13(10), 1615–1620. https://doi.org/10.4314/tjpr.v13i10.7
- Khan, H., Belwal, T., Efferth, T., Farooqi, A. A., Sanches-Silva, A., Vacca, R. A., Nabavi, S. F., Khan, F., Prasad Devkota, H., Barreca, D., Sureda, A., Tejada, S., Dacrema, M., Daglia, M., Suntar, İ., Xu, S., Ullah, H., Battino, M., … Nabavi, S. M. (2020). Targeting epigenetics in cancer: Therapeutic potential of flavonoids. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/10408398.2020.1763910
- Kim, J. H., Choi, G. N., Kwak, J. H., Jeong, C.-H., Jeong, H. R., Lee, U. K., Kim, M.-J., & Heo, H. J. (2012). Inhibitory effects of chestnut inner skin extracts on melanogenesis. Food Science and Biotechnology, 21(6), 1571–1576. https://doi.org/10.1007/s10068-012-0209-8
- Kim, K. M., Lee, H. S., Yun, M. K., Cho, H. Y., Yu, H. J., Sohn, J., & Lee, S. J. (2019). Fermented Castanea crenata inner shell extract increases fat metabolism and decreases obesity in high-fat diet-induced obese mice. Journal of Medicinal Food, 22(3), 264–270. https://doi.org/10.1089/jmf.2018.4240
- Lameirão, F., Pinto, D., F. Vieira, E., F. Peixoto, A., Freire, C., Sut, S., Dall’Acqua, S., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2020). Green-sustainable recovery of phenolic and antioxidant compounds from industrial chestnut shells using ultrasound-assisted extraction: Optimization and evaluation of biological activities in vitro. Antioxidants (Basel), 9(3), 267. https://doi.org/10.3390/antiox9030267
- Lee, H. S., Kim, E. J., & Kim, S. H. (2011). Chestnut extract induces apoptosis in AGS human gastric cancer cells. Nutrition Research and Practice, 5(3), 185–191. https://doi.org/10.4162/nrp.2011.5.3.185
- Lee, H. S., Lim, W. C., Lee, S. J., Lee, S. H., Lee, J. H., & Cho, H. Y. (2016). Antiobesity effect of garlic extract fermented by Lactobacillus plantarum BL2 in diet-induced obese mice. Journal of Medicinal Food, 19(9), 823–829. https://doi.org/10.1089/jmf.2016.3674
- Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731–737. https://doi.org/10.1016/j.ultsonch.2007.12.001
- Lim, D. W., Kim, Y. T., Jang, Y. J., Kim, Y. E., & Han, D. (2013). Anti-obesity effect of Artemisia capillaris extracts in high-fat diet-induced obese rats. Molecules, 18(8), 9241–9252. https://doi.org/10.3390/molecules18089241
- Ling, Y.-H., Aracil, M., Zou, Y., Yuan, Z., Lu, B. O., Jimeno, J., Cuervo, A. M., & Perez-Soler, R. (2011). PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. Clinical Cancer Research, 17(16), 5353–5366. https://doi.org/10.1158/1078-0432.CCR-10-1948
- Liu, X., Wang, Y., Zhang, J., Yan, L., Liu, S., Taha, A. A., Wang, J., & Ma, C. (2020). Subcritical water extraction of phenolic antioxidants with improved α-amylase and α-glucosidase inhibitory activities from exocarps of Castanea mollissima Blume. The Journal of Supercritical Fluids, 158, 104747. https://doi.org/10.1016/j.supflu.2019.104747
- Liu, Y., Wang, W., Fang, B., Ma, F., Zheng, Q., Deng, P., Zhao, S., Chen, M., Yang, G., & He, G. (2013). Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. European Journal of Pharmacology, 698(1–3), 95–102. https://doi.org/10.1016/j.ejphar.2012.10.013
- Luo, X. U., Budihardjo, I., Zou, H., Slaughter, C., & Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94(4), 481–490. https://doi.org/10.1016/S0092-8674(00)81589-5
- Maldonado-Celis, M. E., Bousserouel, S., Gosse, F., Lobstein, A., & Raul, F. (2009). Apple procyanidins activate apoptotic signaling pathway in human colon adenocarcinoma cells by a lipid-raft independent mechanism. Biochemical and Biophysical Research Communications, 388(2), 372–376. https://doi.org/10.1016/j.bbrc.2009.08.016
- Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., & Delgado-Adámez, J. (2017). Application of phenolic compounds for food preservation: food additive and active packaging. Phenolic Compounds - Biological Activity. https://doi.org/10.5772/66885.
10.5772/66885 Google Scholar
- McDaniel, D. H., Neudecker, B. A., DiNardo, J. C., Lewis, J. A., & Maibach, H. I. (2005). Idebenone: A new antioxidant - Part I. Relative assessment of oxidative stress protection capacity compared to commonly known antioxidants. Journal of Cosmetic Dermatology, 4(1), 10–17. https://doi.org/10.1111/j.1473-2165.2005.00152.x
- Morales, A., Gullón, B., Dávila, I., Eibes, G., Labidi, J., & Gullón, P. (2018). Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products, 124, 582–592. https://doi.org/10.1016/j.indcrop.2018.08.032
- Morana, A., Squillaci, G., Paixão, S., Alves, L., Cara, F., & Moura, P. (2017). Development of an energy biorefinery model for chestnut (Castanea sativa Mill.) Shells. Energies, 10(10), 1504. https://doi.org/10.3390/en10101504
- Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., José Núñez, M., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5
- Noh, J.-R., Gang, G.-T., Kim, Y.-H., Yang, K.-J., Hwang, J.-H., Lee, H.-S., Oh, W.-K., Song, K.-S., & Lee, C.-H. (2010). Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food and Chemical Toxicology, 48(11), 3177–3183. https://doi.org/10.1016/j.fct.2010.08.018
- Noh, J.-R., Kim, Y.-H., Gang, G.-T., Hwang, J. H., Lee, H.-S., Ly, S.-Y., Oh, W.-K., Song, K.-S., & Lee, C.-H. (2011). Hepatoprotective effects of chestnut (Castanea crenata) inner shell extract against chronic ethanol-induced oxidative stress in C57BL/6 mice. Food and Chemical Toxicology, 49(7), 1537–1543. https://doi.org/10.1016/j.fct.2011.03.045
- Oliveira, C. P. M. S., Coelho, A. M. M., Barbeiro, H. V., Lima, V. M. R., Soriano, F., Ribeiro, C., Molan, N. A. T., Alves, V. A. F., Souza, H. P., Machado, M. C. C., & Carrilho, F. J. (2006). Liver mitochondrial dysfunction and oxidative stess in the pathogenesis of experimental nonalcoholic fatty liver disease. Brazilian Journal of Medical and Biological Research, 39(2), 189–194. https://doi.org/10.1590/S0100-879X2006000200004
- Oliveira, I., Sousa, A., Ferreira, I. C. F. R., Bento, A., Estevinho, L., & Pereira, J. A. (2008). Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food and Chemical Toxicology, 46(7), 2326–2331. https://doi.org/10.1016/j.fct.2008.03.017
- Oliviero, F., Scanu, A., Zamudio-Cuevas, Y., Punzi, L., & Spinella, P. (2018). Anti-inflammatory effects of polyphenols in arthritis. Journal of the Science of Food and Agriculture, 98(5), 1653–1659. https://doi.org/10.1002/jsfa.8664
- Otles, S., & Selek, I. (2012). Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits. Quality Assurance and Safety of Crops & Foods, 4(4), 199–205. https://doi.org/10.1111/j.1757-837X.2012.00180.x
- Ozcan, T., Yilmaz-Ersan, L., Akpinar-Bayizit, A., & Delikanli, B. (2017). Antioxidant properties of probiotic fermented milk supplemented with chestnut flour (Castanea sativa Mill). Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13156
- Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498.
- Park, E. J., Choi, K. S., & Kwon, T. K. (2011). Beta-Lapachone-induced reactive oxygen species (ROS) generation mediates autophagic cell death in glioma U87 MG cells. Chemico-Biological Interactions, 189(1–2), 37–44. https://doi.org/10.1016/j.cbi.2010.10.013
- Pelvan, E., Olgun, E. O., Karadag, A., & Alasalvar, C. (2018). Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chemistry, 244, 102–108. https://doi.org/10.1016/j.foodchem.2017.10.011
- Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., Delerue-Matos, C., & Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 334, 127521. https://doi.org/10.1016/j.foodchem.2020.127521
- Mokhtarpour, A. (2014). Extraction of phenolic compounds and tannins from pistachio by-products. Annual Research & Review in Biology, 4(8), 1330–1338. https://doi.org/10.9734/ARRB/2014/7793
10.9734/ARRB/2014/7793 Google Scholar
- Raina, K., Tyagi, A., Kumar, D., Agarwal, R., & Agarwal, C. (2013). Role of oxidative stress in cytotoxicity of grape seed extract in human bladder cancer cells. Food and Chemical Toxicology, 61, 187–195. https://doi.org/10.1016/j.fct.2013.06.039
- Ramos, S. (2008). Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Molecular Nutrition & Food Research, 52(5), 507–526. https://doi.org/10.1002/mnfr.200700326
- Rodrigues, F., Santos, J., Pimentel, F. B., Braga, N., Palmeira-de-Oliveira, A., & Oliveira, M. B. (2015). Promising new applications of Castanea sativa shell: Nutritional composition, antioxidant activity, amino acids and vitamin E profile. Food & Function, 6(8), 2854–2860. https://doi.org/10.1039/c5fo00571j
- Sharma, N. (2014). Free radicals, antioxidants and disease. Biology and Medicine, 6(3), 214. https://doi.org/10.4172/0974-8369.1000214
10.4172/0974-8369.1000214 Google Scholar
- Silva, V., Falco, V., Dias, M. I., Barros, L., Silva, A., Capita, R., Alonso-Calleja, C., Amaral, J. S., Igrejas, G., C. F. R. Ferreira, I., & Poeta, P. (2020). Evaluation of the phenolic profile of Castanea sativa Mill. by-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants (Basel), 9(1), 87. https://doi.org/10.3390/antiox9010087
- Sorice, A., Siano, F., Capone, F., Guerriero, E., Picariello, G., Budillon, A., Ciliberto, G., Paolucci, M., Costantini, S., & Volpe, M. (2016). Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules, 21(10), 1411. https://doi.org/10.3390/molecules21101411
- Squillaci, G., Apone, F., Sena, L. M., Carola, A., Tito, A., Bimonte, M., Lucia, A. D., Colucci, G., Cara, F. L., & Morana, A. (2018). Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochemistry, 64, 228–236. https://doi.org/10.1016/j.procbio.2017.09.017
- Stewart, S., Jones, D., & Day, C. P. (2001). Alcoholic liver disease: New insights into mechanisms and preventative strategies. Trends in Molecular Medicine, 7, 408–413. https://doi.org/10.1016/S1471-4914(01)02096-2
- Tamuly, C., Hazarika, M., Bora, J., Bordoloi, M., Boruah, M. P., & Gajurel, P. R. (2013). In vitro study on antioxidant activity and phenolic content of three Piper species from North East India. Journal of Food Science and Technology, 52(1), 117–128. https://doi.org/10.1007/s13197-013-1021-z
10.1007/s13197-013-1021-z Google Scholar
- Tanase, C., Cosarca, S., & Muntean, D. L. (2019). A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 24(6), 1182. https://doi.org/10.3390/molecules24061182
- Turrini, F., Donno, D., Boggia, R., Beccaro, G. L., Zunin, P., Leardi, R., & Pittaluga, A. M. (2019). An innovative green extraction and re-use strategy to valorize food supplement by-products: Castanea sativa bud preparations as case study. Food Research International, 115, 276–282. https://doi.org/10.1016/j.foodres.2018.12.018
- Tuyen, P., Xuan, T., Khang, D. O., Ahmad, A., Quan, N., Tu Anh, T., Anh, L. A., & Minh, T. (2017). Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants (Basel), 6(2), 31. https://doi.org/10.3390/antiox6020031
- Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
- Vazquez, G., Calvo, M., Sonia Freire, M., Gonzalez-Alvarez, J., & Antorrena, G. (2009). Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 172(2–3), 1402–1414. https://doi.org/10.1016/j.jhazmat.2009.08.006
- Vázquez, G., Pizzi, A., Freire, M. S., Santos, J., Antorrena, G., & González-Álvarez, J. (2012). MALDI-TOF, HPLC-ESI-TOF and 13C-NMR characterization of chestnut (Castanea sativa) shell tannins for wood adhesives. Wood Science and Technology, 47(3), 523–535. https://doi.org/10.1007/s00226-012-0513-8
- Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agriculture and Food Chemistry, 46(10), 4113–4117. https://doi.org/10.1021/jf9801973
- Vella, F. M., De Masi, L., Calandrelli, R., Morana, A., & Laratta, B. (2019). Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds. European Food Research and Technology, 245(12), 2679–2686. https://doi.org/10.1007/s00217-019-03379-w
- Vella, F. M., Laratta, B., La Cara, F., & Morana, A. (2018). Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Natural Product Research, 32(9), 1022–1032. https://doi.org/10.1080/14786419.2017.1378199
- Venukumar, M. R., & Latha, M. S. (2002). Antioxidant activity ofcurculigo orchioides in carbon tetrachloride-induced hepatopathy in rats. Indian Journal of Clinical Biochemistry, 17(2), 80–87. https://doi.org/10.1007/BF02867976
- Wahle, K. W., Brown, I., Rotondo, D., & Heys, S. D. (2010). Plant phenolics in the prevention and treatment of cancer. Advances in Experimental Medicine & Biology, 698, 36–51.
- Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312. https://doi.org/10.1016/j.tifs.2005.12.004
- Youn, U. Y., Shon, M. S., Kim, G. N., Katagiri, R., Harata, K., Ishida, Y., & Lee, S. C. (2016). Antioxidant and anti-adipogenic activities of chestnut (Castanea crenata) byproducts. Food Science and Biotechnology, 25(4), 1169–1174. https://doi.org/10.1007/s10068-016-0186-4
- Sroka, Z. (2005). Antioxidative and antiradical properties of plant phenolics. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 60(11–12), 833–843. https://doi.org/10.1515/znc-2005-11-1204
- Zhang, H., Ke, J., Shao, T., Li, J., Duan, Y., He, Y., Zhang, C., Chen, G., Sun, G., & Sun, X. (2014). Cytotoxic effects of procyanidins from Castanea mollissima Bl. shell on human hepatoma G2 cells in vitro. Food and Chemical Toxicology, 64, 166–176. https://doi.org/10.1016/j.fct.2013.11.026
- Zhang, H., Luo, X., Ke, J., Duan, Y., He, Y., Zhang, D. I., Cai, M., Sun, G., & Sun, X. (2016). Procyanidins, from Castanea mollissima Bl. shell, induces autophagy following apoptosis associated with PI3K/AKT/mTOR inhibition in HepG2 cells. Biomedicine & Pharmacotherapy, 81, 15–24. https://doi.org/10.1016/j.biopha.2016.04.002
- Zhang, Y., Yang, Z., Liu, G., Wu, Y., & Ouyang, J. (2020). Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of alpha-amylase, alpha-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chemistry, 324, 126847. https://doi.org/10.1016/j.foodchem.2020.126847
- Zhao, Q., Feng, H., & Wang, L. (2014). Dyeing properties and color fastness of cellulase-treated flax fabric with extractives from chestnut shell. Journal of Cleaner Production, 80, 197–203. https://doi.org/10.1016/j.jclepro.2014.05.069