Saponin-rich extracts from Holothuria leucospilota mediate lifespan extension and stress resistance in Caenorhabditis elegans via daf-16
Thitinan Kitisin
Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
Search for more papers by this authorWorawit Suphamungmee
Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Krai Meemon
Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
Correspondence
Krai Meemon, Faculty of Science, Department of Anatomy, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
Email: [email protected], [email protected]
Search for more papers by this authorThitinan Kitisin
Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
Search for more papers by this authorWorawit Suphamungmee
Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Krai Meemon
Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
Correspondence
Krai Meemon, Faculty of Science, Department of Anatomy, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
Email: [email protected], [email protected]
Search for more papers by this authorFunding information
Mahidol University Grant; Capacity Building Program for New Researcher (2018) from the National Research Council of Thailand (NRCT); Central Instrument Facility (CIF) grant, Faculty of Science, Mahidol University
Abstract
Saponins are secondary metabolite compounds that can be found in sea cucumbers (Holothuroidea spp.). However, little is known about how saponin-rich extracts from Holothuria leucospilota can delay and prolong the lifespan of the whole organism. In this study, anti-aging effects of H. leucospilota extracts were studied on Caenorhabditis elegans. NMR analysis revealed that body wall n-butanol-extract of H. leucospilota (BW-BU) is saponin-rich. BW-BU extracts exhibited antioxidant activities by 2,2ʹ-diphenyl-2-picrylhydrazyl assay (EC50 = 10.23 ± 0.12 mg/ml) and 2,2ʹ-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay (EC50 = 3.91 ± 0.04 mg/ml). BW-BU extracts increased lifespan of L4 and L1 C. elegans (5.92% and 15.76%, respectively), which also increased worm growth, stress resistance, and reduced biomarkers for aging. BW-BU extracts activated DAF-16 nuclear localization and upregulated daf-16 and DAF-16 target genes expression. Taken together, this study revealed the evidences on anti-aging activities of saponin-rich extracts from H. leucospilota, which can extend lifespan of C. elegans via daf-16.
Practical applications
In recent years, age-associated chronic diseases have had a significant impact on quality of life. Many natural compounds exhibit anti-aging activities, especially in sea cucumber, H. leucospilota. Our results indicated that H. leucospilota is good for health. Extracts from H. leucospilota contain a bioactive compound that can be potentially used to promote longevity and disease prevention in aging.
CONFLICT OF INTEREST
The authors report no conflict of interest.
Supporting Information
Filename | Description |
---|---|
jfbc13075-sup-0001-Supinfo.docxWord document, 6.4 MB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Accili, D., & Arden, K. C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 117(4), 421–426. https://doi.org/10.1016/S0092-8674(04)00452-0
- Althunibat, O. Y., Ridzwan, B. H., Taher, M., Daud, J. M., Jauhari Arief Ichwan, S., & Qaralleh, H.(2013). Antioxidant and cytotoxic properties of two sea cucumbers, Holothuria edulis Lesson and Stichopus horrens Selenka. Acta Biologica Hungarica, 64(1), 10–20. https://doi.org/10.1556/ABiol.64.2013.1.2
- Altintas, O., Park, S., & Lee, S. J. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Reports, 49(2), 81–92. https://doi.org/10.5483/BMBRep.2016.49.2.261
- Berdichevsky, A., Viswanathan, M., Horvitz, H. R., & Guarente, L. (2006). C. elegans SIR-2.1 interacts with 14–3-3 proteins to activate DAF-16 and extend life span. Cell, 125(6), 1165–1177. https://doi.org/10.1016/j.cell.2006.04.036
- Bordbar, S., Anwar, F., & Saari, N. (2011). High-value components and bioactives from sea cucumbers for functional foods—A review. Marine Drugs, 9(10), 1761–1805. https://doi.org/10.3390/md9101761
- Britton, A., Shipley, M., Singh-Manoux, A., & Marmot, M. G. (2008). Successful aging: The contribution of early-life and midlife risk factors. Journal of the American Geriatrics Society, 56(6), 1098–1105. https://doi.org/10.1111/j.1532-5415.2008.01740.x
- Caraci, F., Copani, A., Nicoletti, F., & Drago, F. (2010). Depression and Alzheimer's disease: Neurobiological links and common pharmacological targets. European Journal of Pharmacology, 626(1), 64–71. https://doi.org/10.1016/j.ejphar.2009.10.022
- Chalorak, P., Jattujan, P., Nobsathian, S., Poomtong, T., Sobhon, P., & Meemon, K. (2018). Holothuria scabra extracts exhibit anti-Parkinson potential in C. elegans: A model for anti-Parkinson testing. Nutritional Neuroscience, 21(6), 427–438. https://doi.org/10.1080/1028415X.2017.1299437
- Chumphoochai, K., Chalorak, P., Suphamungmee, W., Sobhon, P., & Meemon, K. (2019). Saponin-enriched extracts from body wall and cuvierian tubule of Holothuria leucospilota reduce fat accumulation and suppress lipogenesis in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, 99(8), 4158–4166. https://doi.org/10.1002/jsfa.9646
- Coburn, C., Allman, E., Mahanti, P., Benedetto, A., Cabreiro, F., Pincus, Z., … Gems, D. (2013). Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biology, 11(7), e1001613. https://doi.org/10.1371/journal.pbio.1001613
- Coburn, C., & Gems, D. (2013). The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway. Frontier in Genetics, 4, 151. https://doi.org/10.3389/fgene.2013.00151
- Dong, Y., Guha, S., Sun, X., Cao, M., Wang, X., & Zou, S. (2012). Nutraceutical interventions for promoting healthy aging in invertebrate models. Oxidative Medicine and Cellular Longevity, 2012, 718491. https://doi.org/10.1155/2012/718491
- Dyck, S. V., Gerbaux, P., & Flammang, P. (2010). Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean. Marine Drugs, 8(1), 173–189. https://doi.org/10.3390/md8010173
- Ewald, C. Y., Castillo-Quan, J. I., & Blackwell, T. K. (2018). Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling. Gerontology, 64(1), 96–104. https://doi.org/10.1159/000480504
- Farage, M. A., Miller, K. W., Elsner, P., & Maibach, H. I. (2008). Intrinsic and extrinsic factors in skin ageing: A review. International Journal of Cosmetic Science, 30(2), 87–95. https://doi.org/10.1111/j.1468-2494.2007.00415.x
- Felix, J. F., Voortman, T., van den Hooven, E. H., Sajjad, A., Leermakers, E. T. M., Tharner, A., … Franco, O. H. (2014). Health in children: A conceptual framework for use in healthy ageing research. Maturitas, 77(1), 47–51. https://doi.org/10.1016/j.maturitas.2013.09.011
- Fisher, A. L., & Lithgow, G. J. (2006). The nuclear hormone receptor DAF-12 has opposing effects on Caenorhabditis elegans lifespan and regulates genes repressed in multiple long-lived worms. Aging Cell, 5(2), 127–138. https://doi.org/10.1111/j.1474-9726.2006.00203.x
- Garigan, D., Hsu, A. L., Fraser, A. G., Kamath, R. S., Ahringer, J., & Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: A role for heat-shock factor and bacterial proliferation. Genetics, 161(3), 1101–1112.
- Garsin, D. A., Villanueva, J. M., Begun, J., Kim, D. H., Sifri, C. D., Calderwood, S. B., & Ausubel, F. M. (2003). Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science, 300(5627), 1921–1921. https://doi.org/10.1126/science.1080147
- Gerstbrein, B., Stamatas, G., Kollias, N., & Driscoll, M. (2005). In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell, 4(3), 127–137. https://doi.org/10.1111/j.1474-9726.2005.00153.x
- Guha, S., Cao, M., Kane, R. M., Savino, A. M., Zou, S., & Dong, Y. (2013). The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. Age (Dordr), 35(5), 1559–1574. https://doi.org/10.1007/s11357-012-9459-x
- Halaschek-Wiener, J., Khattra, J. S., McKay, S., Pouzyrev, A., Stott, J. M., Yang, G. S., … Riddle, D. L. (2005). Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Research, 15(5), 603–615. https://doi.org/10.1101/gr.3274805
- Han, H., Yi, Y. H., Li, L., Liu, B. S., Pan, M. X., Yan, B., & Wang, X. H. (2009). Triterpene glycosides from sea cucumber Holothuria leucospilota. Chinese Journal of Natural Medicines, 7(5), 346–350. https://doi.org/10.3724/SP.J.1009.2009.00346
- Henderson, S. T., & Johnson, T. E. (2001). daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current Biology, 11(24), 1975–1980. https://doi.org/10.1016/S0960-9822(01)00594-2
- Hu, X., Li, Z., Xue, Y., Xu, J., Xue, C., Wang, J., & Wang, Y. (2012). Dietary saponins of sea cucumber ameliorate obesity, hepatic steatosis, and glucose intolerance in high-fat diet-fed mice. Journal of Medicinal Food, 15(10), 909–916. https://doi.org/10.1089/jmf.2011.2042
- Jattujan, P., Chalorak, P., Siangcham, T., Sangpairoj, K., Nobsathian, S., Poomtong, T., … Meemon, K. (2018). Holothuria scabra extracts possess anti-oxidant activity and promote stress resistance and lifespan extension in Caenorhabditis elegans. Experimental Gerontology, 110, 158–171. https://doi.org/10.1016/j.exger.2018.06.006
- Jung, T., Bader, N., & Grune, T. (2007). Lipofuscin: Formation, distribution, and metabolic consequences. Annals of the New York Academy of Sciences, 1119, 97–111. https://doi.org/10.1016/j.exger.2003.10.020
- Kalinin, V. I., Silchenko, A. S., Avilov, S. A., Stonik, V. A., & Smirnov, A. V. (2005). Sea cucumbers triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Phytochemistry Reviews, 4(2–3), 221–236. https://doi.org/10.1007/s11101-005-1354-y
- Kamal, Z., Ullah, F., Ayaz, M., Sadiq, A., Ahmad, S., Zeb, A., … Imran, M. (2015). Anticholinesterase and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: Potential effectiveness in Alzheimer's and other neurological disorders. Biological Research, 48, 21. https://doi.org/10.1186/s40659-015-0011-1
- Kamarudin, K. R., & Rehan, M. M. (2015). Morphological and molecular identification of Holothuria (Merthensiothuria) leucospilota and Stichopus horrens from Pangkor Island. Malaysia. Tropical Life Sciences Research, 26(1), 87–99.
- Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
- Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504–512. https://doi.org/10.1038/nature08980
- Kim, S. K., & Pangestuti, R. (2011). Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. Advances in Food and Nutrition Research, 64, 111–128. https://doi.org/10.1016/B978-0-12-387669-0.00009-0
- Krzyzanowska, J., Czubacka, A., & Oleszek, W. (2010). Dietary phytochemicals and human health. Advances in Experimental Medicine and Biology, 698, 74–98. https://doi.org/10.1007/978-1-4419-7347-4_7
- Le Bourg, E. (2009). Hormesis, aging and longevity. Biochimica Et Biophysica Acta, 1790(10), 1030–1039. https://doi.org/10.1016/j.bbagen.2009.01.004
- Lee, J.-H., Choi, S.-H., Kwon, O.-S., Shin, T.-J., Lee, J.-H., Lee, B.-H., … Nah, S.-Y. (2007). Effects of ginsenosides, active ingredients of Panax ginseng, on development, growth, and life span of Caenorhabditis elegans. Biological and Pharmaceutical Bulletin, 30(11), 2126–2134. https://doi.org/10.1248/bpb.30.2126
- Lee, J., Kwon, G., & Lim, Y. H. (2015). Elucidating the mechanism of Weissella-dependent lifespan extension in Caenorhabditis elegans. Scientific Reports, 5, 17128. https://doi.org/10.1038/srep17128
- Lee, S. J., Hwang, A. B., & Kenyon, C. (2010). Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Current Biology, 20(23), 2131–2136. https://doi.org/10.1016/j.cub.2010.10.057
- Liao, V. H., Yu, C. W., Chu, Y. J., Li, W. H., Hsieh, Y. C., & Wang, T. T. (2011). Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of Ageing and Development, 132(10), 480–487. https://doi.org/10.1016/j.mad.2011.07.008
- López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
- Malaiwong, N., Chalorak, P., Jattujan, P., Manohong, P., Niamnont, N., Suphamungmee, W., … Meemon, K. (2019). Anti-Parkinson activity of bioactive substances extracted from Holothuria leucospilota. Biomedicine & Pharmacotherapy, 109, 1967–1977. https://doi.org/10.1016/j.biopha.2018.11.063
- Meydani, M. (2001). Nutrition interventions in aging and age-associated disease. Annals of the New York Academy of Sciences, 928(1), 226–235. https://doi.org/10.1111/j.1749-6632.2001.tb05652.x
- Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., … Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277–283. https://doi.org/10.1038/nature01789
- Netala, V. R., Ghosh, S. B., Bobbu, P., Anitha, D., & Tartte, V. (2014). Triterpenoid saponins: A review on biosynthesis, applications and mechanism of their action. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 24–28.
- Nicolai, S., Rossi, A., Di Daniele, N., Melino, G., Annicchiarico-Petruzzelli, M., & Raschellà, G. (2015). DNA repair and aging: The impact of the p53 family. Aging (Albany NY), 7(12), 1050–1065. https://doi.org/10.18632/aging.100858
- Oh, S. W., Mukhopadhyay, A., Svrzikapa, N., Jiang, F., Davis, R. J., & Tissenbaum, H. A. (2005). JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4494–4499. https://doi.org/10.1073/pnas.0500749102
- Pincus, Z., Mazer, T. C., & Slack, F. J. (2016). Autofluorescence as a measure of senescence in C. elegans: Look to red, not blue or green. Aging (Albany NY), 8(5), 889–898 https://doi.org/10.18632/aging.100936
- Qian, Y., & Chen, X. (2013). Senescence regulation by the p53 protein family. Methods in Molecular Biology, 965, 37–61. https://doi.org/10.1007/978-1-62703-239-1_3
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Rizvi, S. I., & Maurya, P. K. (2007). Alterations in antioxidant enzymes during aging in humans. Molecular Biotechnology, 37(1), 58–61. https://doi.org/10.1007/s12033-007-0048-7
- Saczynski, J. S., Beiser, A., Seshadri, S., Auerbach, S., Wolf, P. A., & Au, R. (2010). Depressive symptoms and risk of dementia: The framingham heart study. Neurology, 75(1), 35–41. https://doi.org/10.1212/WNL.0b013e3181e62138
- Sánchez-Blanco, A., & Kim, S. K. (2011). Variable pathogenicity determines individual lifespan in Caenorhabditis elegans. PLoS Genetics, 7, e1002047. https://doi.org/10.1371/journal.pgen.1002047
- Sander, M., Oxlund, B., Jespersen, A., Krasnik, A., Mortensen, E. L., Westendorp, R. G., & Rasmussen, L. J. (2015). The challenges of human population ageing. Age and Ageing, 44(2), 185–187. https://doi.org/10.1093/ageing/afu189
- Santos, J., Leitão-Correia, F., Sousa, M. J., & Leão, C. (2016). Dietary restriction and nutrient balance in aging. Oxidative Medicine and Cellular Longevity, 2016, 4010357. https://doi.org/10.1155/2016/4010357
- Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
- Sroyraya, M., Kaewphalug, W., Anantachoke, N., Poomtong, T., Sobhon, P., Srimongkol, A., & Suphamungmee, W. (2018). Saponins enriched in the epidermal layer of Holothuria leucospilota body wall. Microscopy Research and Technique, 81(10), 1182–1190. https://doi.org/10.1002/jemt.23115
- Sun, X., Chen, W. D., & Wang, Y. D. (2017). DAF-16/FOXO transcription factor in aging and longevity. Frontiers in Pharmacology, 8, 548. https://doi.org/10.3389/fphar.2017.00548
- Wahlbeck, K., Forsén, T., Osmond, C., Barker, D. J., & Eriksson, J. G. (2001). Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Archives of General Psychiatry, 58(1), 48–52. https://doi.org/10.1001/archpsyc.58.1.48
- Wang, X., Zhang, J., Lu, L., & Zhou, L. (2015). The longevity effect of echinacoside in Caenorhabitis elegens medicated through daf-16. Bioscience, Biotechnology, and Biochemistry, 79(10), 1676–1683. https://doi.org/10.1080/09168451.2015.1046364
- Weinkove, D., Halstead, J. R., Gems, D., & Divecha, N. (2006). Long-term starvation and ageing induce AGE-1/PI 3-kinase-dependent translocation of DAF-16/FOXO to the cytoplasm. BMC Biology, 4, 1. https://doi.org/10.1186/1741-7007-4-1
- Wu, Z., Smith, J. V., Paramasivam, V., Butko, P., Khan, I., Cypser, J. R., & Luo, Y. (2002). Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cellular and Molecular Biology (Noisy-le-Grand), 48(6), 725–731.
- Zhou, K. I., Pincus, Z., & Slack, F. J. (2011). Longevity and stress in Caenorhabditis elegans. Aging (Albany NY), 3(8), 733–753. https://doi.org/10.18632/aging.100367