New Insights Into the Phylogeny and Biogeography of Goji Berries (Lycium, Solanaceae) Inferred From Plastid Data
Gulbar Yisilam
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
Search for more papers by this authorKenneth M. Cameron
Department of Botany, University of Wisconsin, Madison, Wisconsin, USA
Search for more papers by this authorZhi-Yong Zhang
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Search for more papers by this authorEn-Ting Zheng
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Search for more papers by this authorChuan-Ning Li
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Search for more papers by this authorZhen-Zhou Chu
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorYing Su
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorJia-Lei Li
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorYu-Wei Wang
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorJin Li
Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
Search for more papers by this authorCorresponding Author
Pan Li
Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
Correspondence:
Xin-Min Tian ([email protected])
Pan Li ([email protected])
Search for more papers by this authorCorresponding Author
Xin-Min Tian
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Correspondence:
Xin-Min Tian ([email protected])
Pan Li ([email protected])
Search for more papers by this authorGulbar Yisilam
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
Search for more papers by this authorKenneth M. Cameron
Department of Botany, University of Wisconsin, Madison, Wisconsin, USA
Search for more papers by this authorZhi-Yong Zhang
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Search for more papers by this authorEn-Ting Zheng
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Search for more papers by this authorChuan-Ning Li
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Search for more papers by this authorZhen-Zhou Chu
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorYing Su
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorJia-Lei Li
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorYu-Wei Wang
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Search for more papers by this authorJin Li
Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, Xinjiang, China
Search for more papers by this authorCorresponding Author
Pan Li
Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
Correspondence:
Xin-Min Tian ([email protected])
Pan Li ([email protected])
Search for more papers by this authorCorresponding Author
Xin-Min Tian
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
Correspondence:
Xin-Min Tian ([email protected])
Pan Li ([email protected])
Search for more papers by this authorFunding: This work was supported by The National Natural Science Foundation of China (32360058). The Key Technology Research and Development Program of Zhejiang Province (2023C03138), China. The Central Government Guides Local Science and Technology Development Projects, China (2023ZYZX1224).
ABSTRACT
Aim
Lycium L. (Solanaceae), which is known for producing goji berries, is an important plant with both medicinal and edible uses. This genus is globally distributed in temperate and subtropical regions. However, a comprehensive phylogeny and evolutionary history of this plant group is lacking so far. This study was executed to produce novel insights into the phylogenetic relationships and evolutionary history of this small but economically important genus.
Location
North America, South America, Hawaii, Africa and Eurasia.
Taxon
Lycium L. (Solanaceae).
Methods
We established a phylogenetic framework for Lycium based on complete plastome sequences and data from 80 protein-coding genes across 43 Lycium species using maximum likelihood and Bayesian inference methods. Furthermore, 14 species from the Solanaceae family were used as outgroups. Additionally, two Solanoideae fossils and one secondary calibration point were used to estimate divergence times and reveal the biographical history of these plants through ancestral area reconstruction.
Results
Our analysis revealed that six North American Lycium species were strongly supported as monophyletic with high support and were sister clades to the remainder of the genus. The remaining species from North America, South America and the Hawaiian Islands shared a common ancestor, whereas all species from Africa, Saharo-Arabia and Eurasia formed a distinct clade. Our results indicated that Lycium originated in North America during the Late Oligocene and then dispersed to Hawaii and South America, from there to Africa, and then further to Saharo-Arabia, with a more recent dispersal to Eurasia.
Main Conclusions
Our plastid genome data confirmed that Lycium originated in North America and identified long-distance dispersal as the key to its global distribution. Genomic insights facilitate species identification and contribute to conservation efforts.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
Data used in this study were included in the manuscript or Supporting Information. All newly assembled plastome sequences in this study have been deposited in the NCBI GenBank database under the accession numbers PP952454–PP952511.
Supporting Information
Filename | Description |
---|---|
jbi15163-sup-0001-supinfo.docxWord 2007 document , 47.7 KB |
Data S1. |
jbi15163-sup-0002-supinfo.docxWord 2007 document , 1 MB |
Data S2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Axelrod, D. I., and P. H. Raven. 1978. “ Late Cretaceous and Tertiary Vegetation History of Africa.” In Biogeography and Ecology of Southern Africa, edited by M. J. A. Werger, 77–130. Dr W. Junk bv Publishers. https://doi.org/10.1007/978-94-009-9951-05.
- Bernardello, L. M. 1986. “Revisión taxonómica de las especies sudamericanas de ‘Lycium’ (Solanaceae).” Boletín de la Academia Nacional de Ciencias de Córdoba 57: 173–356.
- Bernardello, L. M. 1987. “Comparative Floral Morphology in Lycieae (Solanceae).” Brittonia 39, no. 1: 112–129. https://doi.org/10.2307/2806983.
10.2307/2806983 Google Scholar
- Bolger, A. M., M. Lohse, and B. Usadel. 2014. “Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.” Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.
- Cai, H. M., X. Liu, W. Q. Wang, et al. 2023. “Phylogenetic Relationships and Biogeography of Asia Callicarpa (Lamiaceae), With Consideration of a Long-Distance Dispersal Across the Pacific Ocean—Insights Into Divergence Modes of Pantropical Flora.” Frontiers in Plant Science 14: 1133157. https://doi.org/10.3389/fpls.2023.1133157.
- Cao, Y. L., Y. L. Li, Y. F. Fan, et al. 2021. “Wolfberry Genomes and the Evolution of Lycium (Solanaceae).” Communications Biology 4: 671. https://doi.org/10.1038/s42003-021-02152-8.
- Chen, Y. P., T. O. Turdimatovich, M. S. Nuraliev, P. Lazarević, B. T. Drew, and C. L. Xiang. 2022. “Phylogeny and Biogeography of the Northern Temperate Genus Dracocephalum s.l. (Lamiaceae).” Cladistics 38, no. 4: 429–451. https://doi.org/10.1111/cla.12502.
- Chiang-Cabrera, F. 1981. A Taxonomic Study of the North American Species of Lycium (Solanaceae). Department of Botany, University of Texas.
- Clayton, J. W., P. S. Soltis, and D. E. Soltis. 2009. “Recent Long-Distance Dispersal Overshadows Ancient Biogeographical Patterns in a Pantropical Angiosperm Family (Simaroubaceae, Sapindales).” Systematic Biology 58: 395–410. https://doi.org/10.1093/sysbio/syp041.
- Daniell, H., C. S. Lin, M. Yu, and W. J. Chang. 2016. “Chloroplast Genomes: Diversity, Evolution, and Applications in Genetic Engineering.” Genome Biology 17: 134. https://doi.org/10.1186/s13059-016-1004-2.
- Deng, T., J. W. Zhang, Y. Meng, S. Volis, H. Sun, and Z. L. Nie. 2017. “Role of the Qinghai-Tibetan Plateau Uplift in the Northern Hemisphere Disjunction: Evidence From Two Herbaceous Genera of Rubiaceae.” Scientific Reports 7: 13411. https://doi.org/10.1038/s41598-017-13543-5.
- Dobrogojski, J., M. Adamiec, and R. Luciński. 2020. “The Chloroplast Genome: A Review.” Acta Physiologiae Plantarum 42: 98. https://doi.org/10.1007/s11738-020-03089-x.
- Drummond, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut. 2006. “Relaxed Phylogenetics and Dating With Confidence.” PLoS Biology 4: e88. https://doi.org/10.1371/journal.pbio.0040088.
- Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. “Bayesian Phylogenetics With BEAUti and the BEAST 1.7.” Molecular Biology and Evolution 29: 1969–1973. https://doi.org/10.1093/molbev/mss075.
- Duan, L., A. J. Harris, C. Su, et al. 2020. “Chloroplast Phylogenomics Reveals the Intercontinental Biogeographic History of the Liquorice Genus (Leguminosae: Glycyrrhiza).” Frontiers in Plant Science 11: 793. https://doi.org/10.3389/fpls.2020.00793.
- Fan, X. K., J. Wu, H. P. Comes, et al. 2023. “Phylogenomic, Morphological, and Niche Differentiation Analyses Unveil Species Delimitation and Evolutionary History of Endangered Maples in Acer Series Campestria (Sapindaceae).” Journal of Systematics and Evolution 61, no. 2: 284–298. https://doi.org/10.1111/jse.12919.
- Fernandes, C. A., E. J. Rohling, and M. Siddall. 2006. “Absence of Post-Miocene Red Sea Land Bridges: Biogeographic Implications.” Journal of Biogeography 33: 961–966. https://doi.org/10.1111/j.1365-2699.2006.01478.x.
- Fukuda, T., J. Yokoyama, and H. Ohashi. 2001. “Phylogeny and Biogeography of the Genus Lycium (Solanaceae): Inferences From Chloroplast DNA Sequences.” Molecular Phylogenetics and Evolution 19: 246–258. https://doi.org/10.1006/mpev.2001.0921.
- Gong, H. G., F. Rehman, Y. Ma, et al. 2022. “Germplasm Resources and Strategy for Genetic Breeding of Lycium Species: A Review.” Frontiers in Plant Science 13: 802936. https://doi.org/10.3389/fpls.2022.802936.
- Hitchcock, C. L. 1932. “A Monographic Study of the Genus Lycium of the Western Hemisphere.” Annals of the Missouri Botanical Garden 19: 179–374. https://doi.org/10.2307/2394155.
10.2307/2394155 Google Scholar
- Hoang, D. T., O. Chernomor, A. Von Haeseler, et al. 2018. “UFBoot2: Improving the Ultrafast Bootstrap Approximation.” Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281.
- Huang, J., W. B. Xu, J. W. Zhai, et al. 2023. “Nuclear Phylogeny and Insights Into Whole-Genome Duplications and Reproductive Development of Solanaceae Plants.” Plant Communications 4, no. 4: 100595. https://doi.org/10.1016/j.xplc.2023.100595.
- Inda, L. A., J. G. Segarra-Moragues, J. Müller, P. M. Peterson, and P. Catalán. 2008. “Dated Historical Biogeography of the Temperate Loliinae (Poaceae, Pooideae) Grasses in the Northern and Southern Hemispheres.” Molecular Phylogenetics and Evolution 46: 932–957. https://doi.org/10.1016/j.ympev.2007.11.022.
- Jia, G., G. Xin, X. Ren, et al. 2018. “Characterization of the Complete Chloroplast Genome of Lycium barbarum (Solanales: Solanaceae), a Unique Economic Plant to China.” Mitochondrial DNA Part B Resources 3: 1062–1063. https://doi.org/10.1080/23802359.2018.1509930.
- Jin, J. J., W. B. Yu, J. B. Yang, et al. 2020. “GetOrganelle: A Fast and Versatile Toolkit for Accurate de Novo Assembly of Organelle Genomes.” Genome Biology 21: 241. https://doi.org/10.1186/s13059-020-02154-5.
- Katoh, K., and D. M. Standley. 2013. “MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability.” Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010.
- Kearse, M., R. Moir, A. Wilson, et al. 2012. “Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data.” Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.
- Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld, and B. Calcott. 2016. “PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution Formolecular and Morphological Phylogenetic Analyses.” Molecular Biology and Evolution 34: 772–773. https://doi.org/10.1093/molbev/msw260.
- Lehwark, P., and S. Greiner. 2019. “GB2sequin - a File Converter Preparing Custom GenBank Files for Database Submission.” Genomics 111: 759–761. https://doi.org/10.1016/j.ygeno.2018.05.003.
- Levin, R. A., and J. S. Miller. 2005. “Relationships Within Tribe Lycieae (Solanaceae): Paraphyly of Lycium and Multiple Origins of Gender Dimorphism.” American Journal of Botany 92: 2044–2053.
- Levin, R. A., J. R. Shak, J. S. Miller, G. Bernardello, and A. M. Venter. 2007. “Evolutionary Relationships in Tribe Lycieae (Solanaceae).” Acta Horticulturae 745, no. 745: 225–240. https://doi.org/10.17660/ActaHortic.2007.745.9.
- Levin, R. A., A. Whelan, and J. S. Miller. 2009. “The Utility of Nuclear Conserved Ortholog Set II (COSII) Genomic Regions for Species-Level Phylogenetic Inference in Lycium (Solanaceae).” Molecular Phylogenetics and Evolution 53: 881–890. https://doi.org/10.1016/j.ympev.2009.08.016.
- Librado, P., and J. Rozas. 2009. “DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data.” Bioinformatics 25: 1451–1452. https://doi.org/10.1093/bioinformatics/btp187.
- Liu, J., Y. Duan, G. Hao, X. Ge, and H. Sun. 2014. “Evolutionary History and Underlying Adaptation of Alpine Plants on the Qinghai–Tibet Plateau.” Journal of Systematics and Evolution 52: 241–249. https://doi.org/10.1111/jse.12094.
- Liu, X., Z. Wang, W. Wang, et al. 2022. “Origin and Evolutionary History of Populus (Salicaceae): Further Insights Based on Time Divergence and Biogeographic Analysis.” Frontiers in Plant Science 13: 1031087. https://doi.org/10.3389/fpls.2022.1031087.
- Liu, Y. P., X. T. Xu, D. Dimitrov, et al. 2023. “An Updated Floristic Map of the World.” Nature Communications 14, no. 1: 2990. https://doi.org/10.1038/s41467-023-38375-y.
- Lossada, A. C., L. Giambiagi, G. Hoke, J. Mescua, J. Suriano, and M. Mazzitelli. 2018. “ Cenozoic Uplift and Exhumation of the Frontal Cordillera Between 30° and 35° S and the Influence of the Subduction Dynamics in the Flat Slab Subduction Context, South Central Andes.” In The Evolution of the Chilean-Argentinean Andes, 387–409. Springer. https://doi.org/10.1007/978-3-319-67774-3_16.
- Martin, W., T. Rujan, E. Richly, et al. 2002. “Evolutionary Analysis of Arabidopsis, Cyanobacterial, and Chloroplast Genomes Reveals Plastid Phylogeny and Thousands of Cyanobacterial Genes in the Nucleus.” Proceedings of the National Academy of Sciences of the United States of America 99: 12246–12251. https://doi.org/10.1073/pnas.182432999.
- McLoughlin, S. 2001. “The Breakup History of Gondwana and Its Impact on Pre-Cenozoic Floristic Provincialism.” Australian Journal of Botany 49: 271. https://doi.org/10.1071/BT00023.
- Meng, H., X. Gao, J. Huang, and M. Zhang. 2015. “Plant Phylogeography in Arid Northwest China: Retrospectives and Perspectives.” Journal of Systematics and Evolution 53, no. 1: 33–46. https://doi.org/10.1111/jse.12088.
- Miller, J. S. 2002. “Phylogenetic Relationships and the Evolution of Gender Dimorphism in Lycium (Solanaceae).” Systematic Botany 27: 416–428. https://doi.org/10.2307/3093881.
- Miller, J. S., A. Kamath, J. Damashek, and R. A. Levin. 2011. “Out of America to Africa or Asia: Inference of Dispersal Histories Using Nuclear and Plastid DNA and the S-Rnase Self-Incompatibility Locus.” Molecular Biology and Evolution 28: 793–801. https://doi.org/10.1093/molbev/msq253.
- Minh, B. Q., H. A. Schmidt, O. Chernomor, et al. 2020. “IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era.” Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015.
- Morley, R. J. 2003. “Interplate Dispersal Paths for Megathermal Angiosperms.” Perspectives in Plant Ecology, Evolution and Systematics 6: 5–20. https://doi.org/10.1078/1433-8319-00039.
- Nie, Z. L., T. Deng, Y. Meng, H. Sun, and J. Wen. 2013. “Post-Boreotropical Dispersals Explain the Pantropical Disjunction in Paederia (Rubiaceae).” Annals of Botany 111: 873–886. https://doi.org/10.1093/aob/mct053.
- Nie, Z. L., H. Sun, S. R. Manchester, Y. Meng, Q. Luke, and J. Wen. 2012. “Evolution of the Intercontinental Disjunctions in Six Continents in the Ampelopsis Clade of the Grape Family (Vitaceae).” BMC Ecology and Evolution 12: e17. https://doi.org/10.1186/1471-2148-12-17.
- Pfannschmidt, T., R. Blanvillain, L. Merendino, et al. 2015. “Plastid RNA Polymerases: Orchestration of Enzymes With Different Evolutionary Origins Controls Chloroplast Biogenesis During the Plant Life Cycle.” Journal of Experimental Botany 66: 6957–6973. https://doi.org/10.1093/jxb/erv415.
- Popp, M., V. Mirré, and C. Brochmann. 2011. “A Single Mid-Pleistocene Long-Distance Dispersal by a Bird Can Explain the Extreme Bipolar Disjunction in Crowberries (Empetrum).” Proceedings of the National Academy of Sciences of the United States of America 108: 6520–6525. https://doi.org/10.1073/pnas.1012249108.
- Posada, D., and K. A. Crandall. 2001. “Evaluation of Methods for Detecting Recombination From DNA Sequences: Computer Simulations.” Proceedings of the National Academy of Sciences of the United States of America 98: 13757–13762. https://doi.org/10.1073/pnas.241370698.
- Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. “Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.” Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032.
- Raven, P. H. 1963. “Amphitropical Relationships in the Floras of North and South America.” Quarterly Review of Biology 38: 151–177. https://doi.org/10.1086/403797.
- Raven, P. H., and D. I. Axelrod. 1974. “Angiosperm Biogeography and Past Continental Movements.” Annals of the Missouri Botanical Garden 61, no. 3: 539–673. https://doi.org/10.2307/2395021.
- Ravi, V., J. P. Khurana, A. K. Tyagi, and P. Khurana. 2008. “An Update on Chloroplast Genomes.” Plant Systematics and Evolution 271: 101–122. https://doi.org/10.1007/s00606-007-0608-0.
- Ronquist, F., M. Teslenko, P. Van Der Mark, et al. 2012. “MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space.” Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029.
- Roquet, C., I. Sanmartín, N. Garcia-Jacas, et al. 2009. “Reconstructing the History of Campanulaceae With a Bayesian Approach to Molecular Dating and Dispersal–Vicariance Analyses.” Molecular Phylogenetics and Evolution 52: 575–587. https://doi.org/10.1016/j.ympev.2009.05.014.
- Sakurai, I., D. Stazic, M. Eisenhut, et al. 2012. “Positive Regulation of psbA Gene Expression by Cis-Encoded Antisense RNAs in Synechocystis sp. PCC 6803.” Plant Physiology 160, no. 2: 1000–1010. https://doi.org/10.1104/pp.112.202127.
- Senut, B., M. Pickford, and L. Ségalen. 2009. “Neogene Desertification of Africa.” Comptes Rendus Geoscience 341: 591–602. https://doi.org/10.1016/j.crte.2009.03.008.
- Simpson, M. G., L. A. Johnson, T. Villaverde, and C. M. Guilliams. 2017. “American Amphitropical Disjuncts: Perspectives From Vascular Plant Analyses and Prospects for Future Research.” American Journal of Botany 104: 1600–1650. https://doi.org/10.3732/ajb.1700308.
- Stadler, T. 2009. “On Incomplete Sampling Under Birth–Death Models and Connections to the Sampling-Based Coalescent.” Journal of Theoretical Biology 261: 58–66. https://doi.org/10.1016/j.jtbi.2009.07.018.
- Su, Z., and M. Zhang. 2013. “Evolutionary Response to Quaternary Climate Aridification and Oscillations in North-Western China Revealed by Chloroplast Phylogeography of the Desert Shrub Nitraria Sphaerocarpa (Nitrariaceae): Quaternary Climate Aridification and Oscillations.” Biological Journal of the Linnean Society 109: 757–770. https://doi.org/10.1111/bij.12088.
10.1111/bij.12088 Google Scholar
- Su, Z., M. Zhang, and J. I. Cohen. 2012. “Phylogeographic and Demographic Effects of Quaternary Climate Oscillations in Hexinia Polydichotoma (Asteraceae) in Tarim Basin and Adjacent Areas.” Plant Systematics and Evolution 298: 1767–1776. https://doi.org/10.1007/s00606-012-0677-6.
- Symon, D. E. 1991. “ Gondwanan Elements of the Solanaceae.” In Solanaceae III: Taxonomy—Chemistry—Evolution, edited by J. G. Hawks, R. N. Lester, M. Nee, and N. Eserada, 139–150. Royal Botanic Garden, Kew and the Linnean Society of London.
- Sytsma, K. J., A. Litt, M. L. Zjhra, et al. 2004. “Clades, Clocks, and Continents: Historical and Biogeographical Analysis of Myrtaceae, Vochysiaceae, and Relatives in the Southern Hemisphere.” International Journal of Plant Sciences 165: 85–105. https://doi.org/10.1086/421066.
- Talavera, G., and J. Castresana. 2007. “Improvement of Phylogenies After Removing Divergent and Ambiguously Aligned Blocks From Protein Sequence Alignments.” Systematic Biology 56: 564–577. https://doi.org/10.1080/10635150701472164.
- Telang, N., G. Li, D. Sepkovic, H. L. Bradlow, and G. Y. C. Wong. 2014. “Comparative Efficacy of Extracts From Lycium barbarum Bark and Fruit on Estrogen Receptor Positive Human Mammary Carcinoma MCF-7 Cells.” Nutrition and Cancer 66: 278–284. https://doi.org/10.1080/01635581.2014.864776.
- Thiv, M., T. Van der Niet, F. Rutschmann, M. Thulin, T. Brune, and H. P. Linder. 2011. “Old-New World and Trans-African Disjunctions of Thamnosma (Rutaceae): Intercontinental Long-Distance Dispersal and Local Differentiation in the Succulent Biome.” American Journal of Botany 98: 76–87. https://doi.org/10.3732/ajb.1000339.
- Tian, B., J. H. Zhao, M. Zhang, et al. 2021. “Lycium Ruthenicum Anthocyanins Attenuate High-Fat Diet-Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota.” Molecular Nutrition & Food Research 65: 2000745. https://doi.org/10.1002/mnfr.202000745.
- Tiffney, B. H., and S. R. Manchester. 2001. “The Use of Geological and Paleontological Evidence in Evaluating Plant Phylogeographic Hypotheses in the Northern Hemisphere Tertiary.” International Journal of Plant Sciences 162: 3–17. https://doi.org/10.1086/323880.
- Tillich, M., P. Lehwark, T. Pellizzer, et al. 2017. “GeSeq–Versatile and Accurate Annotation of Organelle Genomes.” Nucleic Acids Research 45: 6–11. https://doi.org/10.1093/nar/gkx391.
- Velichkevich, F. Y., and E. Zastawniak. 2003. “The Pliocene Flora of Kholmech, South-Eastern Belarus and Its Correlation With Other Pliocene Floras of Europe.” Acta Palaeobotanica 43: 137–259.
- Venter, A. M., H. J. T. Venter, and J. C. Manning. 2003. “Lycium Gariepense (Solanaceae), a New Species From South Africa and Namibia.” South African Journal of Botany 69: 161–164. https://doi.org/10.1016/S0254-6299(15)30340-9.
- Wang, H. Q., J. N. Li, W. W. Tao, et al. 2018. “Lycium Ruthenicum Studies: Molecular Biology, Phytochemistry and Pharmacology.” Food Chemistry 240: 759–766. https://doi.org/10.1016/j.foodchem.2017.08.026.
- Wang, Y. C., J. Huang, E. Z. Li, et al. 2022. “Phylogenomics and Biogeography of Populus Based on Comprehensive Sampling Reveal Deep-Level Relationships and Multiple Intercontinental Dispersals.” Frontiers in Plant Science 13: 813177. https://doi.org/10.3389/fpls.2022.813177.
- Wen, J., and S. M. Ickert-Bond. 2009. “Evolution of the Madrean–Tethyan Disjunctions and the North and South American Amphitropical Disjunctions in Plants.” Journal of Systematics and Evolution 47: 331–348. https://doi.org/10.1111/j.1759-6831.2009.00054.x.
- Wetters, S., T. Horn, and P. Nick. 2018. “Goji Who? Morphological and DNA Based Authentication of a ‘Superfood’.” Frontiers in Plant Science 9: 1859. https://doi.org/10.3389/fpls.2018.01859.
- Wick, R. R., M. B. Schultz, J. Zobel, and K. E. Holt. 2015. “Bandage: Interactive Visualization of de Novo Genome Assemblies.” Bioinformatics 31: 3350–3352. https://doi.org/10.1093/bioinformatics/btv383.
- Wilf, P., M. R. Carvalho, M. A. Gandolfo, and N. R. Cuneo. 2017. “Eocene Lantern Fruits From Gondwanan Patagonia and the Early Origins of Solanaceae.” Science 355: 71–75. https://doi.org/10.1126/science.aag2737.
- Wolfe, J. A. 1975. “Some Aspects of Plant Geography of the Northern Hemisphere During the Late Cretaceous and Tertiary.” Annals of the Missouri Botanical Garden 62: 264. https://doi.org/10.2307/2395198.
- Xu, X., A. Kleidon, L. Miller, S. Q. Wang, L. Q. Wang, and G. C. Dong. 2010. “Late Quaternary Glaciation in the Tianshan and Implications for Palaeoclimatic Change: A Review.” Boreas 39, no. 2: 215–232. https://doi.org/10.1111/j.1502-3885.2009.00118.x.
- Yao, R., M. Heinrich, and C. S. Weckerle. 2018. “The Genus Lycium as Food and Medicine: A Botanical, Ethnobotanical and Historical Review.” Journal of Ethnopharmacology 212: 50–66. https://doi.org/10.1016/j.jep.2017.10.010.
- Yisilam, G., C. X. Wang, M. Q. Xia, et al. 2022. “Phylogeography and Population Genetics Analyses Reveal Evolutionary History of the Desert Resource Plant Lycium Ruthenicum (Solanaceae).” Frontiers in Plant Science 13: 915526. https://doi.org/10.3389/fpls.2022.915526.
- Yu, Y., A. J. Harris, C. Blair, and X. J. He. 2015. “RASP (Reconstruct Ancestral State in Phylogenies): A Tool for Historical Biogeography.” Molecular Phylogenetics and Evolution 87: 46–49. https://doi.org/10.1016/j.ympev.2015.03.008.
- Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. “Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.” Science 292: 686–693. https://doi.org/10.1126/science.1059412.
- Zeng, Y. F., J. G. Zhang, B. Abuduhamiti, W. T. Wang, and Z. Q. Jia. 2018. “Phylogeographic Patterns of the Desert Poplar in Northwest China Shaped by Both Geology and Climatic Oscillations.” BMC Ecology and Evolution 18: 75. https://doi.org/10.1186/s12862-018-1194-1.
- Zhang, D., F. L. Gao, I. Jakovlić, et al. 2020. “PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies.” Molecular Ecology Resources 20: 348–355. https://doi.org/10.1111/1755-0998.13096.
- Zhang, F., and H. M. Kang. 2021. “FASTQuick: Rapid and Comprehensive Quality Assessment of Raw Sequence Reads.” GigaScience 10: giab004. https://doi.org/10.1093/gigascience/giab004.
- Zhang, H. X., X. S. Li, J. C. Wang, and D. Y. Zhang. 2021. “Insights Into the Aridification History of Central Asian Mountains and International Conservation Strategy From the Endangered Wild Apple Tree.” Journal of Biogeography 48: 332–344. https://doi.org/10.1111/jbi.13999.
- Zhang, L., E. Zhang, Y. Wei, and G. Q. Zheng. 2024. “Phylogenetic Analysis and Divergence Time Estimation of Lycium Species in China Based on the Chloroplast Genomes.” BMC Genomics 25: 569. https://doi.org/10.1186/s12864-024-10487-9.
- Zhang, M. L., and P. W. Fritsch. 2010. “Evolutionary Response of Caragana (Fabaceae) to Qinghai–Tibetan Plateau Uplift and Asian Interior Aridification.” Plant Systematics and Evolution 288: 191–199. https://doi.org/10.1007/s00606-010-0324-z.
- Zhang, X. Z., C. X. Zeng, P. F. Ma, et al. 2016. “Multi-Locus Plastid Phylogenetic Biogeography Supports the Asian Hypothesis of the Temperate Woody Bamboos (Poaceae: Bambusoideae).” Molecular Phylogenetics and Evolution 96: 118–129. https://doi.org/10.1016/j.ympev.2015.11.025.
- Zhang, Y., L. Tian, and C. Lu. 2023. “Chloroplast Gene Expression: Recent Advances and Perspectives.” Plant Communications 4: 100611. https://doi.org/10.1016/j.xplc.2023.100611.
- Zhao, J. H., H. X. Li, Y. Yin, et al. 2020. “Transcriptomic and Metabolomic Analyses of Lycium Ruthenicum and Lycium barbarum Fruits During Ripening.” Scientific Reports 10, no. 1: 4354. https://doi.org/10.1038/s41598-020-61064-5.
- Zheng, J., C. X. Ding, L. S. Wang, et al. 2011. “Anthocyanins Composition and Antioxidant Activity of Wild Lycium Ruthenicum Murr. From Qinghai-Tibet Plateau.” Food Chemistry 126: 859–865. https://doi.org/10.1016/j.foodchem.2010.11.052.
- Zuo, Y. J., J. Wen, and S. L. Zhou. 2017. “Intercontinental and Intracontinental Biogeography of the Eastern Asian – Eastern North American Disjunct Panax (The Ginseng Genus, Araliaceae), emphasizing Its Diversification Processes in Eastern Asia.” Molecular Phylogenetics and Evolution 117: 60–74. https://doi.org/10.1016/j.ympev.2017.06.016.