Climbing Higher: Exploring Northern Andean Origin and Non-Floral Trait Evolution in a Rapid, Recent Angiosperm Radiation
Corresponding Author
Ajith Ashokan
Department of Biology, One University Blvd., University of Missouri—St. Louis, Missouri, USA
Correspondence:
Ajith Ashokan ([email protected])
Nathan Muchhala ([email protected])
Search for more papers by this authorJustin C. Bagley
Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, Alabama, USA
Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorCorresponding Author
Nathan Muchhala
Department of Biology, One University Blvd., University of Missouri—St. Louis, Missouri, USA
Correspondence:
Ajith Ashokan ([email protected])
Nathan Muchhala ([email protected])
Search for more papers by this authorCorresponding Author
Ajith Ashokan
Department of Biology, One University Blvd., University of Missouri—St. Louis, Missouri, USA
Correspondence:
Ajith Ashokan ([email protected])
Nathan Muchhala ([email protected])
Search for more papers by this authorJustin C. Bagley
Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, Alabama, USA
Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
Search for more papers by this authorCorresponding Author
Nathan Muchhala
Department of Biology, One University Blvd., University of Missouri—St. Louis, Missouri, USA
Correspondence:
Ajith Ashokan ([email protected])
Nathan Muchhala ([email protected])
Search for more papers by this authorFunding: National Science Foundation (NSF) (Federal Agency and Organisation Element: 4900, Federal Grant or Other Identifying Number Assigned by Agency: 1754802) research grant awarded to Nathan Muchhala.
ABSTRACT
Aim
The centropogonid clade comprising Burmeistera H.Karst. & Triana, Centropogon C.Presl and Siphocampylus Pohl stands out as one of the most rapid plant radiations in the Neotropics. We investigated the origin and diversification of Burmeistera to enhance our understanding of fruit evolution and other non-floral traits in the genus. By exploring the interplay of morphological, ecological and geographical factors, we sought to provide new insights into how these elements have influenced the evolutionary trajectory of Burmeistera.
Location
Neotropics.
Time Period
Late Pliocene to present.
Taxon
Burmeistera H.Karst. & Triana (Lobelioideae: Campanulaceae).
Methods
Using Hyb-Seq data from 329 nuclear loci, we reconstructed a phylogenetic tree of Burmeistera using maximum likelihood in RAxML and calibrated the final tree with prior age estimates for the Lobelioideae. Additionally, we estimated the species tree in ASTRAL and performed various phylogenetic comparative analyses to explore the historical biogeography and evolution of non-floral traits across Burmeistera.
Results
Burmeistera originated in the Western Cordillera of the Colombian Andes, with species dispersing to the rest of the Northern Andes and Central America between the Late Pliocene and Mid-Pleistocene. Inflated fruits have evolved multiple times in the genus, with their distribution varying by region but reaching the highest proportion in the eastern slopes of the Andes. Higher elevations and larger fruit sizes both increased diversification, especially in a late-branching clade characterised by inflated berries and a climbing habit, which underscores the role of these traits in driving diversification.
Main Conclusions
Studies of diverse but overlooked taxa, such as Burmeistera, can greatly aid our understanding of the ecology and evolution of Neotropical cloud forest ecosystems.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The raw morphological and ecological data are available on MorphoBank (available at: http://morphobank.org/permalink/?P5749), phylogenetic alignments and the Supporting Information are available on Mendeley Data (Bagley et al. 2025; available at: https://doi.org/10.17632/h579b2xvz5.1), and the sequence read data are available in the NCBI Short Read Archive (BioProject accession numbers PRJNA623031 and PRJNA1258895).
Supporting Information
Filename | Description |
---|---|
jbi15142-sup-0001-FigureS1.jpgJPEG image, 1.9 MB |
Figure S1. |
jbi15142-sup-0002-FigureS2.tifTIFF image, 19.6 MB |
Figure S2. |
jbi15142-sup-0003-FigureS3.jpgJPEG image, 3.2 MB |
Figure S3. |
jbi15142-sup-0003-FigureS4.jpgJPEG image, 4.5 MB |
Figure S4. |
jbi15142-sup-0004-FigureS5.jpgJPEG image, 507.1 KB |
Figure S5. |
jbi15142-sup-0005-FigureS6.jpgJPEG image, 1 MB |
Figure S6. |
jbi15142-sup-0006-FigureS7.jpgJPEG image, 1.5 MB |
Figure S7. |
jbi15142-sup-0007-FigureS8.tifTIFF image, 20.2 MB |
Figure S8. |
jbi15142-sup-0008-FigureS9.tifTIFF image, 7.5 MB |
Figure S9. |
jbi15142-sup-0009-FigureS10.tifTIFF image, 23.5 MB |
Figure S10. |
jbi15142-sup-0010-TablesS1-S14.xlsxExcel 2007 spreadsheet , 1.1 MB |
Table S1–S14. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Andermann, T., Á. Cano, A. Zizka, C. Bacon, and A. Antonelli. 2018. “SECAPR—A Bioinformatics Pipeline for the Rapid and User-Friendly Processing of Targeted Enriched Illumina Sequences, From Raw Reads to Alignments.” PeerJ 6: e5175.
- Antonelli, A., J. A. Nylander, C. Persson, and I. Sanmartín. 2009. “Tracing the Impact of the Andean Uplift on Neotropical Plant Evolution.” Proceedings of the National Academy of Sciences 106, no. 24: 9749–9754. https://doi.org/10.1073/pnas.0811421106.
- Antonelli, A., and I. Sanmartín. 2011. “Why Are There So Many Plant Species in the Neotropics?” Taxon 60: 403–414.
- Ashokan, A., N. Muchhala, and A. Zuluaga. 2025. “An Unusual New Ropy-Stemmed Species of Burmeistera From the Western Cordillera of the Colombian Andes.” Phytotaxa 697: 177–186.
- Bagley, J. C. 2020. “‘PIrANHA,’ v0.4a4. GitHub Repository.” https://github.com/justincbagley/piranha.
- Bagley, J. C., A. Ashokan, and N. Muchhala. 2025. “Data for: Climbing Higher: Exploring Northern Andean Origin and Non-Floral Trait Evolution in a Rapid, Recent Angiosperm Radiation, [Dataset] Mendeley Data, V.1.” https://doi.org/10.17632/h579b2xvz5.1.
10.17632/h579b2xvz5.1 Google Scholar
- Bagley, J. C., and J. B. Johnson. 2014. “Phylogeography and Biogeography of the Lower Central American Neotropics: Diversification Between Two Continents and Between Two Seas.” Biological Reviews 89, no. 4: 767–790.
- Bagley, J. C., S. Uribe-Convers, M. M. Carlsen, and N. Muchhala. 2020. “Utility of Targeted Sequence Capture for Phylogenomics in Rapid, Recent Angiosperm Radiations: Neotropical Burmeistera Bellflowers as a Case Study.” Molecular Phylogenetics and Evolution 152: 106769.
- Beaulieu, J. M., and B. O'Meara. 2022. “OUwie: Analysis of Evolutionary Rates in an OU Framework.” R package version 2.10. https://CRAN.R-project.org/package=OUwie.
- Bolger, A. M., M. Lohse, and B. Usadel. 2014. “Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.” Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.
- Bubb, P., I. May, L. Miles, and J. Sayer. 2004. Cloud Forest Agenda. United Nations Environment Programme World Conservation Monitoring Centre. https://doi.org/10.34892/HR2V-XP24.
- Caetano, D. S., B. C. O'Meara, and J. M. Beaulieu. 2018. “Hidden State Models Improve State-Dependent Diversification Approaches, Including Biogeographical Models.” Evolution 72: 2308–2324.
- Castaño, J. H., J. A. Carranza, and J. Pérez-Torres. 2018. “Diet and Trophic Structure in Assemblages of Montane Frugivorous Phyllostomid Bats.” Acta Oecologica 91: 81–90.
- Castillo-Chora, V. D. J., L. E. Zamudio-Beltrán, C. Pozo, and B. E. Hernández-Baños. 2021. “Phylogeography of Habia fuscicauda (Cardinalidae) Indicates Population Isolation, Genetic Divergence and Demographic Changes During the Quaternary Climate Shifts in the Mesoamerican Rainforest.” Journal of Ornithology 162, no. 4: 961–976.
- Cooper, N., G. H. Thomas, C. Venditti, A. Meade, and R. P. Freckleton. 2016. “A Cautionary Note on the Use of Ornstein–Uhlenbeck Models in Macroevolutionary Studies.” Biological Journal of the Linnean Society 118: 64–77.
- Doyle, J. J., and J. L. Doyle. 1987. “A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue.” Phytochemical Bulletin 19: 11–15.
- Eller, C. B., L. D. Meireles, S. Sitch, S. S. Burgess, and R. S. Oliveira. 2020. “How Climate Shapes the Functioning of Tropical Montane Cloud Forests.” Current Forestry Reports 6, no. 2: 97–114. https://doi.org/10.1007/s40725-020-00115-6.
- Ferreira, G. E., J. L. Clark, L. Clavijo, et al. 2024. “Phylogenetics, Character Evolution, and Historical Biogeography of the Neotropical Genus Besleria (Gesneriaceae).” Botanical Journal of the Linnean Society 206, no. 1: boae007. https://doi.org/10.1093/botlinnean/boae007.
- Frost, L., A. M. Bedoya, and L. Lagomarsino. 2024. “Artifactual Orthologs and the Need for Diligent Data Exploration in Complex Phylogenomic Datasets: A Museomic Case Study From the Andean Flora.” Systematic Biology 73, no. 2: syad076. https://doi.org/10.1093/sysbio/syad076.
- Gamba, D., N. R. Maguiña, C. A. Calderón-Acevedo, K. Torres, and N. C. Muchhala. 2017. “Seed Dispersal for the Unusual Inflated Berries of Burmeistera (Campanulaceae).” Neotropical Biodiversity 3, no. 1: 10–17. https://doi.org/10.1080/23766808.2016.1258868.
10.1080/23766808.2016.1258868 Google Scholar
- Gentry, A. H. 1982. “Neotropical Floristic Diversity: Phytogeographical Connections Between Central and South America, Pleistocene Climatic Fluctuations, or an Accident of the Andean Orogeny?” Annals of the Missouri Botanical Garden 69, no. 3: 557–593. https://doi.org/10.2307/2399084.
- Givnish, T. J., M. H. Barfuss, B. Van Ee, et al. 2011. “Phylogeny, Adaptive Radiation, and Historical Biogeography in Bromeliaceae: Insights From an Eight-Locus Plastid Phylogeny.” American Journal of Botany 98, no. 5: 872–895. https://doi.org/10.3732/ajb.1000059.
- González, F. 2023. “Taxonomic Revision of Burmeistera (Campanulaceae-Lobelioideae) in Colombia.” Phytotaxa 615: 1–113.
- Gregory-Wodzicki, K. M. 2000. “Uplift History of the Central and Northern Andes: A Review.” Geological Society of America Bulletin 112, no. 7: 1091–1105.
- Guevara-Andino, J. E., L. M. Dávalos, F. Zapata, et al. 2024. “Neotropics as a Cradle for Adaptive Radiations.” Cold Spring Harbor Perspectives in Biology 17, no. 3: a041452. https://doi.org/10.1101/cshperspect.a041452.
10.1101/cshperspect.a041452 Google Scholar
- Hazzi, N. A., J. S. Moreno, C. Ortiz-Movliav, and R. D. Palacio. 2018. “Biogeographic Regions and Events of Isolation and Diversification of the Endemic Biota of the Tropical Andes.” Proceedings of the National Academy of Sciences 115: 7985–7990.
- Holbrook, N. M., and F. E. Putz. 1996. “ Physiology of Tropical Vines and Hemiepiphytes: Plants That Climb Up and Plants That Climb Down.” In Tropical Forest Plant Ecophysiology, edited by S. S. Mulkey, R. L. Chazdon, and A. P. Smith, 363–394. Springer US.
10.1007/978-1-4613-1163-8_13 Google Scholar
- Hoorn, C., F. P. Wesselingh, H. ter Steege, et al. 2010. “Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity.” Science 330: 927–931.
- Ingram, T. 2011. “Speciation Along a Depth Gradient in a Marine Adaptive Radiation.” Proceedings of the Royal Society B: Biological Sciences 278: 613–618.
- Jaramillo, C. 2023. “The Evolution of Extant South American Tropical Biomes.” New Phytologist 239, no. 2: 477–493.
- Karsten, G. K. W. H., and J. J. Triana. 1854. Nuevos Jeneros i Especies de Plantas para la Flora neo-granadina. Imprenta del Neo-Granadino.
- Lagomarsino, L. P. 2019. “Rapid Plant Diversification in the Andes Does Not Require Flowers.” New Phytologist 222: 11–13. https://doi.org/10.1111/nph.15619.
- Lagomarsino, L. P., A. Antonelli, N. Muchhala, A. Timmermann, S. Mathews, and C. C. Davis. 2014. “Phylogeny, Classification, and Fruit Evolution of the Species-Rich Neotropical Bellflowers (Campanulaceae: Lobelioideae).” American Journal of Botany 101: 2097–2112.
- Lagomarsino, L. P., F. L. Condamine, A. Antonelli, A. Mulch, and C. C. Davis. 2016. “The Abiotic and Biotic Drivers of Rapid Diversification in Andean Bellflowers (Campanulaceae).” New Phytologist 210: 1430–1442.
- Lagomarsino, L. P., E. J. Forrestel, N. Muchhala, and C. C. Davis. 2017. “Repeated Evolution of Vertebrate Pollination Syndromes in a Recently Diverged Andean Plant Clade.” Evolution 71: 1970–1985.
- Lagomarsino, L. P., L. Frankel, S. Uribe-Convers, A. Antonelli, and N. Muchhala. 2022. “Increased Resolution in the Face of Conflict: Phylogenomics of the Neotropical Bellflowers (Campanulaceae: Lobelioideae), a Rapid Plant Radiation.” Annals of Botany 129: 723–736.
- Lammers, T. G. 1998. “Review of the Neotropical Endemics Burmeistera, Centropogon, and Siphocampylus (Campanulaceae: Lobelioideae), with Description of 18 New Species and a New Section.” Brittonia 50: 233–262.
- Lammers, T. G. 2002. “Seventeen New Species of Lobelioideae (Campanulaceae) From South America.” Novon 12, no. 2: 206–233. https://doi.org/10.2307/3392958.
- Li, H., and R. Durbin. 2009. “Fast and Accurate Short Read Alignment With Burrows-Wheeler Transform.” Bioinformatics 25: 1754–1760.
- Li, H., B. Handsaker, A. Wysoker, et al. 2009. “The Sequence Alignment/Map Format and SAMtools.” Bioinformatics 25, no. 16: 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
- Mashburn, B. 2019. “A Taxonomic Revision of the Genus Burmeistera (Campanulaceae) in Ecuador.” Master's Dissertation, University of Missouri-St. Louis, St. Louis, MO.
- Mashburn, B., A. Trigueros, C. U. Ulloa, and N. Muchhala. 2024. “Morphometrics in the Recurved Corolla Clade of Burmeistera (Campanulaceae) Clarifies Species Limits and Identifies a New Species.” Systematic Botany 49, no. 1: 128–153. https://doi.org/10.1600/036364424X17110456120730.
- Mashburn, B., C. U. Ulloa, and N. Muchhala. 2021. “Six New Species of Burmeistera (Campanulaceae) From Ecuador.” Novon: A Journal for Botanical Nomenclature 29: 51–69. https://doi.org/10.3417/2021589.
- Matzke, N. J. 2016. “Trait-Dependent Dispersal Models for Phylogenetic Biogeography, in the R Package BioGeoBEARS.” Integrative and Comparative Biology 56: E330.
- Matzke, N. J. 2022. “Statistical Comparison of DEC and DEC+ J Is Identical to Comparison of Two ClaSSE Submodels, and Is Therefore Valid.” Journal of Biogeography 49, no. 10: 1805–1824. https://doi.org/10.1111/jbi.14346.
- Meyer, V., S. Saatchi, A. Ferraz, et al. 2019. “Forest Degradation and Biomass Loss Along the Chocó Region of Colombia.” Carbon Balance and Management 14: e2.
- Moen, D. S. 2019. “What Determines the Distinct Morphology of Species With a Particular Ecology? The Roles of Many-To-One Mapping and Trade-Offs in the Evolution of Frog Ecomorphology and Performance.” American Naturalist 194: E81–E95.
- Moreira-Hernández, J. I., H. Ghai, N. Terzich, R. Zambrano-Cevallos, N. H. Oleas, and N. Muchhala. 2023. “Limited Reproductive Interference Despite High Rates of Heterospecific Pollen Transfer Among Co-Occurring Bat-Pollinated Burmeistera.” American Journal of Botany 110, no. 6: e16199. https://doi.org/10.1002/ajb2.16199.
- Muchhala, N. 2003. “Exploring the Boundary Between Pollination Syndromes: Bats and Hummingbirds as Pollinators of Burmeistera cyclostigmata and B. tenuiflora (Campanulaceae).” Oecologia 134: 373–380.
- Muchhala, N. 2006. “The Pollination Biology of Burmeistera (Campanulaceae): Specialization and Syndromes.” American Journal of Botany 93, no. 8: 1081–1089. https://doi.org/10.3732/ajb.93.8.1081.
- Muchhala, N. 2007. “Adaptive Trade-Off in Floral Morphology Mediates Specialization for Flowers Pollinated by Bats and Hummingbirds.” American Naturalist 169: 494–504.
- Muchhala, N., and M. D. Potts. 2007. “Character Displacement Among Bat-Pollinated Flowers of the Genus Burmeistera: Analysis of Mechanism, Process and Pattern.” Proceedings of the Royal Society B: Biological Sciences 274: 2731–2737.
- Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. Da Fonseca, and J. Kent. 2000. “Biodiversity Hotspots for Conservation Priorities.” Nature 403, no. 6772: 853–858. https://doi.org/10.1038/35002501.
- Nash, D. L. 1976. “Flora of Guatemala, Campanulaceae.” Fieldiana, Botany Series 24: 396–431.
- O'Dea, A., H. A. Lessios, A. G. Coates, et al. 2016. “Formation of the Isthmus of Panamá.” Science Advances 2: e1600883.
- Orme, D., R. Freckleton, G. Thomas, et al. 2023. “Package ‘caper’, Reference Manual.” https://cran.r-project.org/web/packages/caper/caper.pdf.
- Pagel, M. 1999. “Inferring the Historical Patterns of Biological Evolution.” Nature 401: 877–884.
- Paradis, E., and K. Schliep. 2019. “Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R.” Bioinformatics 35: 526–528.
- Pedraza-Peñalosa, P., N. R. Salinas, A. L. S. Virnig, and W. C. Wheeler. 2015. “Preliminary Phylogenetic Analysis of the Andean Clade and the Placement of New Colombian Blueberries (Ericaceae, Vaccinieae).” PhytoKeys 49: 13–31. https://doi.org/10.3897/phytokeys.49.8622.
- Pérez-Escobar, O. A., E. Lucas, C. Jaramillo, et al. 2019. “The Origin and Diversification of the Hyperdiverse Flora in the Chocó Biogeographic Region.” Frontiers in Plant Science 10: 1328.
- Pérez-Escobar, O. A., A. Zizka, M. A. Bermúdez, et al. 2022. “The Andes Through Time: Evolution and Distribution of Andean Floras.” Trends in Plant Science 27: 364–378.
- Plants of the World Online (POWO). 2025. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/.
- Puttick, M. N., T. Ingram, M. Clarke, and G. H. Thomas. 2020. “MOTMOT: Models of Trait Macroevolution on Trees (An Update).” Methods in Ecology and Evolution 11: 464–471.
- Quintana, C., R. T. Pennington, C. U. Ulloa, and H. Balslev. 2017. “Biogeographic Barriers in the Andes: Is the Amotape—Huancabamba Zone a Dispersal Barrier for Dry Forest Plants?” Annals of the Missouri Botanical Garden 102: 542–550.
10.3417/D-17-00003A Google Scholar
- Rabosky, D. L., M. Grundler, C. Anderson, et al. 2014. “BAMM Tools: An R Package for the Analysis of Evolutionary Dynamics on Phylogenetic Trees.” Methods in Ecology and Evolution 5: 701–707. https://doi.org/10.1111/2041-210X.12199.
- Rabosky, D. L., F. Santini, J. Eastman, et al. 2013. “Rates of Speciation and Morphological Evolution Are Correlated Across the Largest Vertebrate Radiation.” Nature Communications 4: 1958.
- Raven, P. H., and D. I. Axelrod. 1974. “Angiosperm Biogeography and Past Continental Movements.” Annals of the Missouri Botanical Garden 61, no. 3: 539–673. https://doi.org/10.2307/2395021.
- Raven, P. H., R. E. Gereau, P. B. Phillipson, et al. 2020. “The Distribution of Biodiversity Richness in the Tropics.” Science Advances 6, no. 37: eabc6228. https://doi.org/10.1126/sciadv.abc6228.
- Revell, L. 2012. “Phytools: An R Package for Phylogenetic Comparative Biology (And Other Things).” Methods in Ecology and Evolution 3: 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x.
- Sanín, M. J., A. Cardona, W. A. Valencia-Montoya, et al. 2022. “Volcanic Events Coincide With Plant Dispersal Across the Northern Andes.” Global and Planetary Change 210: 103757.
- Schliep, K., A. J. Potts, D. A. Morrison, and G. W. Grimm. 2017. “Intertwining Phylogenetic Trees and Networks.” Methods in Ecology and Evolution 8: 1212–1220.
- Stamatakis, A. 2014. “RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies.” Bioinformatics 30: 1312–1313.
- Stein, B. A. 1987. “Synopsis of the Genus Burmeistera (Campanulaceae: Lobelioideae) in Peru.” Annals of the Missouri Botanical Garden 74, no. 3: 494–496. https://doi.org/10.2307/2399316.
- Testo, W. L., E. Sessa, and D. S. Barrington. 2019. “The Rise of the Andes Promoted Rapid Diversification in Neotropical Phlegmariurus (Lycopodiaceae).” New Phytologist 222: 604–613.
- Tropicos. 2025. “Tropicos.Org, Facilitated by the Missouri Botanical Garden. Online resource.” https://tropicos.org/.
- Uribe-Convers, S., M. M. Carlsen, L. P. Lagomarsino, and N. Muchhala. 2017. “Phylogenetic Relationships of Burmeistera (Campanulaceae: Lobelioideae): Combining Whole Plastome With Targeted Loci Data in a Recent Radiation.” Molecular Phylogenetics and Evolution 107: 551–563.
- Van der Hammen, T., and H. Hooghiemstra. 2000. “Neogene and Quaternary History of Vegetation, Climate, and Plant Diversity in Amazonia.” Quaternary Science Reviews 19, no. 8: 725–742. https://doi.org/10.1016/S0277-3791(99)00024-4.
- Vasconcelos, T., B. C. O'Meara, and J. M. Beaulieu. 2022. “A Flexible Method for Estimating Tip Diversification Rates Across a Range of Speciation and Extinction Scenarios.” Evolution 76, no. 7: 1420–1433.
- Wilbur, R. L. 1975. “A Synopsis of the Costa Rican Species of Burmeistera (Campanulaceae: Lobelioideae).” Bulletin of the Torrey Botanical Club 102: 225–231.
10.2307/2484138 Google Scholar
- Wilbur, R. L. 1976. “Flora of Panama, Part IX. Family 183. Campanulaceae.” Annals of the Missouri Botanical Garden 63: 593–655.
10.2307/2395288 Google Scholar
- Zhang, C., M. Rabiee, E. Sayyari, and S. Mirarab. 2018. “ASTRAL-III: Polynomial Time Species Tree Reconstruction From Partially Resolved Gene Trees.” BMC Bioinformatics 19: 15–30.