Threatened and extinct island endemic birds of the world: Distribution, threats and functional diversity
Corresponding Author
Thomas J. Matthews
GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
CE3C—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group / CHANGE – Global Change and Sustainability Institute and Universidade dos Açores – Faculty of Agricultural Sciences and Environment, Angra do Heroísmo, Açores, Portugal
Correspondence
Thomas J. Matthews, GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK.
Email: [email protected]
Search for more papers by this authorJoseph P. Wayman
GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
Search for more papers by this authorPedro Cardoso
Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
CE3C—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group / CHANGE – Global Change and Sustainability Institute and Universidade dos Açores – Faculty of Agricultural Sciences and Environment, Angra do Heroísmo, Açores, Portugal
Search for more papers by this authorFerran Sayol
CREAF, Centre for Ecological Research and Applied Forestries, Cerdanyola del Vallès, Spain
Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
Search for more papers by this authorJulian P. Hume
Bird Group, Department of Life Sciences, Natural History Museum, Tring, UK
Search for more papers by this authorWerner Ulrich
Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
Search for more papers by this authorJoseph A. Tobias
Department of Life Sciences, Imperial College, London, Ascot, UK
Search for more papers by this authorFilipa C. Soares
Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Search for more papers by this authorChristophe Thébaud
Laboratoire Évolution and Diversité Biologique (UMR 5174), CNRS-IRD-Université Paul Sabatier (Toulouse 3), Toulouse, France
Search for more papers by this authorThomas E. Martin
Operation Wallacea, Spilsby, UK
Wild Planet Trust, Paignton, UK
Search for more papers by this authorKostas A. Triantis
Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
Search for more papers by this authorCorresponding Author
Thomas J. Matthews
GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
CE3C—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group / CHANGE – Global Change and Sustainability Institute and Universidade dos Açores – Faculty of Agricultural Sciences and Environment, Angra do Heroísmo, Açores, Portugal
Correspondence
Thomas J. Matthews, GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK.
Email: [email protected]
Search for more papers by this authorJoseph P. Wayman
GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
Search for more papers by this authorPedro Cardoso
Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
CE3C—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group / CHANGE – Global Change and Sustainability Institute and Universidade dos Açores – Faculty of Agricultural Sciences and Environment, Angra do Heroísmo, Açores, Portugal
Search for more papers by this authorFerran Sayol
CREAF, Centre for Ecological Research and Applied Forestries, Cerdanyola del Vallès, Spain
Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
Search for more papers by this authorJulian P. Hume
Bird Group, Department of Life Sciences, Natural History Museum, Tring, UK
Search for more papers by this authorWerner Ulrich
Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
Search for more papers by this authorJoseph A. Tobias
Department of Life Sciences, Imperial College, London, Ascot, UK
Search for more papers by this authorFilipa C. Soares
Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Search for more papers by this authorChristophe Thébaud
Laboratoire Évolution and Diversité Biologique (UMR 5174), CNRS-IRD-Université Paul Sabatier (Toulouse 3), Toulouse, France
Search for more papers by this authorThomas E. Martin
Operation Wallacea, Spilsby, UK
Wild Planet Trust, Paignton, UK
Search for more papers by this authorKostas A. Triantis
Department of Ecology and Taxonomy, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
Search for more papers by this authorHandling Editor: Luis Valente
Abstract
Aim
The world's islands support disproportionate levels of endemic avian biodiversity despite suffering numerous extinctions. While intensive recent research has focused on island bird conservation or extinction, few global syntheses have considered these factors together from the perspective of morphological trait diversity. Here, we provide a global summary of the status and ecology of extant and extinct island birds, the threats they face and the implications of species loss for island functional diversity.
Location
Global.
Taxon
Birds.
Methods
We provide a review of the literature on threatened and extinct island birds, with a particular focus on global studies that have incorporated functional diversity. Alongside this, we analyse IUCN Red List data in relation to distribution, threats and taxonomy. Using null models and functional hypervolumes, in combination with morphological trait data, we assess the functional diversity represented by threatened and extinct island endemic birds.
Results and main conclusions
We find that almost half of all island endemic birds extant in 1500 CE are currently either extinct or threatened with extinction, with the majority of threatened extant species having declining population trends. We also found evidence of 66 island endemic subspecies extinctions. The primary threats to extant island endemic birds currently are agriculture, biological resource use, and invasive species. While there is overlap between the hotspots of threatened and extinct island endemics birds, there are some notable differences, including the Philippines and Indonesia, which support a substantial number of threatened species but have no recorded post-1500 CE bird extinctions. Traits associated with threatened island endemic birds are large body mass, flightlessness, aquatic predator, omnivorous and vertivorous trophic niches, marine habitat affinity, and, paradoxically, higher dispersal ability. Critically, we find that threatened endemics (i) occupy distinct areas of beak morphospace, and (ii) represent substantial unique areas of the overall functional space of island endemics. We caution that the loss of threatened species may have severe effects on the ecological functions birds provide on islands.
Open Research
DATA AVAILABILITY STATEMENT
Due to Dryad's incompatibility with IUCN data licenses we deposited the code and data on Github (txm676/islandbirds; DOI:10.5281/zenodo.7034283).
Supporting Information
Filename | Description |
---|---|
jbi14474-sup-0001-supplementary information.docxWord 2007 document , 1.4 MB |
Appendix S1 |
jbi14474-sup-0002-supplementary information.xlsxapplication/excel, 16.1 KB |
Appendix S2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Akbar, P. G., Nugroho, T. W., Suranto, M., Fauzan, M. R., Ferdiansyah, D., Trisiyanto, J. S., & Yong, D. L. (2021). No longer an enigma: Rediscovery of black-browed babbler Malacocincla perspicillata in Kalimantan, Indonesia. Journal of Asian Ornithology, 37, 1–5.
- Albert, S., Flores, O., Baider, C., Florens, F. B. V., & Strasberg, D. (2021). Differing severity of frugivore loss contrasts the fate of native forests on the land of the dodo (Mascarene archipelago). Biological Conservation, 257, 109131.
- Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent extinctions. Biology Letters, 12, 20150623.
- Bennett, P. M., & Owens, I. P. F. (1997). Variation in extinction risk among birds: Chance or evolutionary predisposition? Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 401–408.
- Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (2022). Birds of the world. https://birdsoftheworld.org/bow/home
- Birdlife International. (2021). Birdlife data zone. http://datazone.birdlife.org/home
- Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L., & Gaston, K. J. (2004). Avian extinction and mammalian introductions on oceanic islands. Science, 305, 1955–1958.
- Blonder, B., Babich Morrow, C., Maitner, B., Harris, D. J., Lamanna, C., Violle, C., Enquist, B. J., & Kerkhoff, A. J. (2018). New approaches for delineating n-dimensional hypervolumes. Methods in Ecology and Evolution, 9, 305–319.
- Bowler, D. E., Heldbjerg, H., Fox, A. D., de Jong, M., & Böhning-Gaese, K. (2019). Long-term declines of European insectivorous bird populations and potential causes. Conservation Biology, 33, 1120–1130.
- Boyer, A. G. (2008). Extinction patterns in the avifauna of the Hawaiian islands. Diversity and Distributions, 14, 509–517.
- Boyer, A. G., & Jetz, W. (2014). Extinctions and the loss of ecological function in Island bird communities. Global Ecology and Biogeography, 23, 679–688.
- Butchart, S. H. M., Lowe, S., Martin, R. W., Symes, A., Westrip, J. R. S., & Wheatley, H. (2018). Which bird species have gone extinct? A novel quantitative classification approach. Biological Conservation, 227, 9–18.
- Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., Orme, D., & Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309, 1239–1241.
- Cardoso, P., Rigal, F., & Carvalho, J. C. (2015). BAT—Biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution, 6, 232–236.
- Carmona, C. P., Tamme, R., Pärtel, M., de Bello, F., Brosse, S., Capdevila, P., González-M, R., González-Suárez, M., Salguero-Gómez, R., Vásquez-Valderrama, M., & Toussaint, A. (2021). Erosion of global functional diversity across the tree of life. Science Advances, 7, eabf2675.
- Carpenter, J. K., Wilmshurst, J. M., McConkey, K. R., Hume, J. P., Wotton, D. M., Shiels, A. B., Burge, O. R., & Drake, D. R. (2020). The forgotten fauna: Native vertebrate seed predators on islands. Functional Ecology, 34, 1802–1813.
- Caves, E. M., Jennings, S. B., HilleRisLambers, J., Tewksbury, J. J., & Rogers, H. S. (2013). Natural experiment demonstrates that bird loss leads to cessation of dispersal of native seeds from intact to degraded forests. PLoS ONE, 8, e65618.
- Chamberlain, S. (2020). rredlist: ‘IUCN’ Red List Client. R package, Version 0.7.0. https://cran.r-project.org/web/packages/rredlist/index.html
- Chichorro, F., Juslén, A., & Cardoso, P. (2019). A review of the relation between species traits and extinction risk. Biological Conservation, 237, 220–229.
- Cooke, R. S. C., Eigenbrod, F., & Bates, A. E. (2019). Projected losses of global mammal and bird ecological strategies. Nature Communications, 10, 2279.
- Diamond, J. M. (1981). Flightlessness and fear of flying in Island species. Nature, 293, 507–508.
- Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345, 401–406.
- Duncan, R. P., & Blackburn, T. M. (2007). Causes of extinction in Island birds. Animal Conservation, 10, 149–150.
- Duncan, R. P., Blackburn, T. M., & Worthy, T. H. (2002). Prehistoric bird extinctions and human hunting. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 517–521.
- Duncan, R. P., Boyer, A. G., & Blackburn, T. M. (2013). Magnitude and variation of prehistoric bird extinctions in the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 110, 6436–6441.
- Fernández-Palacios, J. M., Kreft, H., Irl, S. D. H., Norder, S., Ah-Peng, C., Borges, P. A. V., Burns, K. C., de Nascimento, L., Meyer, J.-Y., Montes, E., & Drake, D. R. (2021). Scientists' warning—The outstanding biodiversity of islands is in peril. Global Ecology and Conservation, 31, e01847.
- Fromm, A., & Meiri, S. (2021). Big, flightless, insular and dead: Characterising the extinct birds of the quaternary. Journal of Biogeography, 48, 2350–2359.
- Gaston, K. J., & Blackburn, T. M. (1995). Birds, body size and the threat of extinction. Philosophical Transactions: Biological Sciences, 347, 205–212.
- Graham, N. R., Gruner, D. S., Lim, J. Y., & Gillespie, R. G. (2017). Island ecology and evolution: Challenges in the Anthropocene. Environmental Conservation, 44, 323–335.
- Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1, e1500052.
- Heinen, J. H., van Loon, E. E., Hansen, D. M., & Kissling, W. D. (2017). Extinction-driven changes in frugivore communities on oceanic islands. Ecography, 41, 1245–1255.
- Holdaway, R. N. (1999). Introduced predators and avifaunal extinction in New Zealand. In R. D. E. MacPhee (Ed.), Extinctions in near time: Causes, contexts, and consequences (pp. 189–238). American Museum of Natural History.
10.1007/978-1-4757-5202-1_9 Google Scholar
- Holdaway, R. N., & Jacomb, C. (2000). Rapid extinction of the moas (Aves: Dinornithiformes): Model, test, and implications. Science, 287, 2250–2254.
- Hume, J. P. (2017). Extinct birds. Bloomsbury.
- Hume, J. P., Martill, D., & Hing, R. (2018). A terrestrial vertebrate palaeontological review of Aldabra atoll, Aldabra group, Seychelles. PLoS ONE, 13, e0192675.
- Hume, J. P., & Robertson, C. (2021). Eggs of extinct dwarf Island emus retained large size. Biology Letters, 17, 20210012.
- IUCN. (2021a). IUCN Red List of threatened species. Version 2021-2. www.iucnredlist.org
- IUCN. (2021b). Summary statistics. https://www.iucnredlist.org/statistics
- Johnson, T. H., & Stattersfield, A. J. (1990). A global review of island endemic birds. Ibis, 132, 167–180.
- Leclerc, C., Courchamp, F., & Bellard, C. (2018). Insular threat associations within taxa worldwide. Scientific Reports, 8, 6393.
- Leclerc, C., Courchamp, F., & Bellard, C. (2020). Future climate change vulnerability of endemic Island mammals. Nature Communications, 11, 4943.
- Leclerc, C., Villéger, S., Marino, C., & Bellard, C. (2020). Global changes threaten functional and taxonomic diversity of insular species worldwide. Diversity and Distributions, 26, 402–414.
- Lees, A. C., Haskell, L., Allinson, T., Bezeng, S. B., Burfield, I. J., Renjifo, L. M., Rosenberg, K. V., Viswanathan, A., & Butchart, S. H. M. (2022). State of the world's birds. Annual Review of Environment and Resources, 47. https://doi.org/10.1146/annurev-environ-112420-014642
10.1146/annurev?environ?112420?014642 Google Scholar
- Lévêque, L., Buettel, J. C., Carver, S., & Brook, B. W. (2021). Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae). Royal Society Open Science, 8, 210262.
- Lhotsky, B., Kovács, B., Ónodi, G., Csecserits, A., Rédei, T., Lengyel, A., Kertész, M., & Botta-Dukát, Z. (2016). Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. Journal of Ecology, 104, 507–517.
- Loehle, C., & Eschenbach, W. (2012). Historical bird and terrestrial mammal extinction rates and causes. Diversity and Distributions, 18, 84–91.
- Mammola, S., & Cardoso, P. (2020). Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods in Ecology and Evolution, 11, 986–995.
- Marino, C., Leclerc, C., & Bellard, C. (2022). Profiling insular vertebrates prone to biological invasions: What makes them vulnerable? Global Change Biology, 28, 1077–1090.
- Martin, T. E., Bennet, G. C., Fairbairn, A., & Mooers, A. O. (2022). ‘Lost’ taxa and their conservation implications. Animal Conservation. https://doi.org/10.1111/acv.12788
- Matthews, T. J. (2021). On the biogeography of habitat islands: The importance of matrix effects, noncore species, and source-sink dynamics. The Quarterly Review of Biology, 96, 73–104.
- Matthews, T. J., Leidinger, L. K. T., & Cabral, J. S. (2020). The effect of species extinctions on Island biogeographic patterns. Ecological Research, 35, 372–381.
- Matthews, T. J., Rigal, F., Kougioumoutzis, K., Trigas, P., & Triantis, K. A. (2020). Unravelling the small-Island effect through phylogenetic community ecology. Journal of Biogeography, 47, 2341–2352.
- Matthews, T. J., & Triantis, K. (2021). Island biogeography. Current Biology, 31, R1201–R1207.
- Milberg, P., & Tyrberg, T. (1993). Naïve birds and noble savages—A review of man-caused prehistoric extinctions of Island birds. Ecography, 16, 229–250.
- Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In F. E. Zachos & J. C. Habel (Eds.), Biodiversity hotspots: Distribution and protection of conservation priority areas (pp. 3–22). Springer.
10.1007/978-3-642-20992-5_1 Google Scholar
- Owens, I. P. F., & Bennett, P. M. (2000). Ecological basis of extinction risk in birds: Habitat loss versus human persecution and introduced predators. Proceedings of the National Academy of Sciences of the United States of America, 97, 12144–12148.
- Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C., & Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution, 4, 230–239.
- Pimm, S., Raven, P., Peterson, A., Şekercioğlu, Ç. H., & Ehrlich, P. R. (2006). Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences of the United States of America, 103, 10941–10946.
- R Core Team. (2019). R: A language and environment for statistical computing (version 3.4.3). R Foundation for Statistical Computing. https://www.R-project.org/
- Rando, J. C., Alcover, J. A., Pieper, H., Olson, S. L., Hernández, C. N., & López-Jurado, L. F. (2020). Unforeseen diversity of quails (Galliformes: Phasianidae: Coturnix) in oceanic islands provided by the fossil record of Macaronesia. Zoological Journal of the Linnean Society, 188, 1296–1317.
- Richards, C., Cooke, R. S. C., & Bates, A. E. (2021). Biological traits of seabirds predict extinction risk and vulnerability to anthropogenic threats. Global Ecology and Biogeography, 30, 973–986.
- Russell, J. C., & Kueffer, C. (2019). Island biodiversity in the Anthropocene. Annual Review of Environment and Resources, 44, 31–60.
- Sayol, F., Cooke, R. S. C., Pigot, A. L., Blackburn, T. M., Tobias, J. A., Steinbauer, M. J., Antonelli, A., & Faurby, S. (2021). Loss of functional diversity through anthropogenic extinctions of Island birds is not offset by biotic invasions. Science Advances, 7, eabj5790.
- Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A., & Faurby, S. (2020). Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Science Advances, 6, eabb6095.
- Şekercioğlu, Ç. H., Daily, G. C., & Ehrlich, P. R. (2004). Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences of the United States of America, 101, 18042–18047.
- Sheard, C., Neate-Clegg, M. H. C., Alioravainen, N., Jones, S. E. I., Vincent, C., MacGregor, H. E. A., Bregman, T. P., Claramunt, S., & Tobias, J. A. (2020). Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nature Communications, 11, 2463.
- Soares, F. C., de Lima, R. F., Palmeirim, J. M., Cardoso, P., & Rodrigues, A. S. L. (2022). Combined effects of bird extinctions and introductions in oceanic islands: Decreased functional diversity despite increased species richness. Global Ecology and Biogeography, 31, 1172–1183. https://doi.org/10.1111/geb.13494
- Soares, F. C., Leal, A. I., Palmeirim, J. M., & de Lima, R. F. (2021). Niche differences may reduce susceptibility to competition between native and non-native birds in oceanic islands. Diversity and Distributions, 27, 1507–1518.
- Sobral, F. L., Lees, A. C., & Cianciaruso, M. V. (2016). Introductions do not compensate for functional and phylogenetic losses following extinctions in insular bird assemblages. Ecology Letters, 19, 1091–1100.
- Spatz, D. R., Zilliacus, K. M., Holmes, N. D., Butchart, S. H. M., Genovesi, P., Ceballos, G., Tershy, B. R., & Croll, D. A. (2017). Globally threatened vertebrates on islands with invasive species. Science Advances, 3, e1603080.
- Steadman, D. W. (1997). Human-caused extinction of birds. In M. L. Reaka-Kudla, D. E. Wilson, & E. O. Wilson (Eds.), Biodiversity II: Understanding and protecting our biological resources (pp. 139–162). Joseph Henry Press.
- Steadman, D. W. (2006). Extinction and biogeography of tropical Pacific birds. University of Chicago Press.
- Steadman, D. W., & Franklin, J. (2020). Bird populations and species lost to late quaternary environmental change and human impact in The Bahamas. Proceedings of the National Academy of Sciences of the United States of America, 117, 26833–26841.
- Stouffer, P. C., Jirinec, V., Rutt, C. L., Bierregaard, R. O., Jr., Hernández-Palma, A., Johnson, E. I., Midway, S. R., Powell, L. L., Wolfe, J. D., & Lovejoy, T. E. (2021). Long-term change in the avifauna of undisturbed Amazonian rainforest: Ground-foraging birds disappear and the baseline shifts. Ecology Letters, 24, 186–195.
- Szabo, J. K., Khwaja, N., Garnett, S. T., & Butchart, S. H. M. (2012). Global patterns and drivers of avian extinctions at the species and subspecies level. PLoS ONE, 7, e47080.
- Thébaud, C., & Strasberg, D. (1997). Plant dispersal in fragmented landscapes: A field study of woody colonization in rainforest remnants of the Mascarene archipelago. In W. F. Laurance & R. O. Bierregaard (Eds.), Tropical forest remnants: Ecology, conservation, and management (pp. 321–335). University of Chicago Press.
- Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S., … Schleuning, M. (2022). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25, 581–597.
- Tobias, J. A., Ottenburghs, J., & Pigot, A. L. (2020). Avian diversity: Speciation, macroevolution, and ecological function. Annual Review of Ecology, Evolution, and Systematics, 51, 533–560.
- Triantis, K., Rigal, F., Whittaker, R. J., Hume, J. P., Sheard, C., Poursanidis, D., Rolland, J., Sfenthourakis, S., Matthews, T. J., Thébaud, C., & Tobias, J. A. (2022). Deterministic assembly and anthropogenic extinctions drive convergence of Island bird communities. Global Ecology and Biogeography, 31, 1741–1755. https://doi.org/10.1111/geb.13556
- Ulrich, W., Kryszewski, W., Sewerniak, P., Puchałka, R., Strona, G., & Gotelli, N. J. (2017). A comprehensive framework for the study of species co-occurrences, nestedness, and turnover. Oikos, 126, 1607–1616.
- Veron, S., Mouchet, M., Govaerts, R., Haevermans, T., & Pellens, R. (2019). Vulnerability to climate change of islands worldwide and its impact on the tree of life. Scientific Reports, 9, 14471.
- Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios, J. M., Hengl, T., Norder, S. J., Rijsdijk, K. F., Sanmartín, I., Strasberg, D., Triantis, K. A., … Thébaud, C. (2015). Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecology Letters, 18, 200–217.
- Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: Ecology, evolution, and conservation ( 2nd ed.). Oxford University Press.
- Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography: Taking the long view of nature's laboratories. Science, 357, eaam8326.
- Wright, N. A., Steadman, D. W., & Witt, C. C. (2016). Predictable evolution toward flightlessness in volant Island birds. Proceedings of the National Academy of Sciences of the United States of America, 113, 4765–4770.
- Yee, T. W. (2015). Vector generalized linear and additive models: With an implementation in R. Springer.
10.1007/978-1-4939-2818-7 Google Scholar