Spatial phylogenetic patterns in the North American moss flora are shaped by history and climate
Corresponding Author
Benjamin E. Carter
Department of Biological Sciences, San Jose State University, San Jose, California, USA
Correspondence
Benjamin E. Carter, Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA.
Email: [email protected]
Search for more papers by this authorTracy M. Misiewicz
University and Jepson Herbaria, University of California, Berkeley, California, USA
Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
Search for more papers by this authorBrent D. Mishler
University and Jepson Herbaria, University of California, Berkeley, California, USA
Department of Integrative Biology, University of California, Berkeley, California, USA
Search for more papers by this authorCorresponding Author
Benjamin E. Carter
Department of Biological Sciences, San Jose State University, San Jose, California, USA
Correspondence
Benjamin E. Carter, Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA.
Email: [email protected]
Search for more papers by this authorTracy M. Misiewicz
University and Jepson Herbaria, University of California, Berkeley, California, USA
Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
Search for more papers by this authorBrent D. Mishler
University and Jepson Herbaria, University of California, Berkeley, California, USA
Department of Integrative Biology, University of California, Berkeley, California, USA
Search for more papers by this authorHandling Editor: Alain Vanderpoorten
Abstract
Aim
We documented patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) in the moss flora of North America, determined how environmental variables explain these patterns, compared the patterns in mosses to known patterns in angiosperms and explored how patterns driven by sub-clades might conflict with patterns driven by other sub-clades.
Location
North America north of Mexico.
Taxon
Mosses (Bryophyta).
Methods
A maximum-likelihood tree inferred from publicly available sequence data and locality data from ca. 7.5 × 105 herbarium specimens were combined to build a dataset of 935 species (representing ca. 67% of the known moss flora). Spatial randomization procedures were used to find significance levels of PD and relative phylogenetic diversity (RPD) for the full dataset and three major sub-clades, as well as to carry out a categorical analysis of Neo- and Paleo-endemism (CANAPE). Range weighted turnover in both species and PE was used to identify phytogeographic regions across the continent. Ordinations of environmental data were used to determine the distribution of PD, RPD, and phytogeographic regions within environmental space. Results of this study were compared to known patterns of phylodiversity in angiosperms.
Results
Phylodiversity is distributed non-randomly. Some patterns, for example, long branches in the southeastern US, are consistent with angiosperms; however, there are strong contrasts as well. Overall patterns of PD and RPD are strongly influenced by different phylogenetic scales within mosses, indicating that signal from one clade can obscure patterns in others. Three primary phytogeographic zones are defined by both differing geological histories and differing current abiotic conditions. Phytogeographic regions, PD, and RPD are all aligned with environmental variables.
Main conclusions
There is evidence for both ecological and historical factors in shaping the moss flora of North America, and biogeographic differences between angiosperms and mosses appear to align with important life-history differences between the two groups.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The sequence alignment, ML tree and occurrence data used in this study are openly available from the Dryad Digital Repository (https://doi.org/10.5061/dryad.r7sqv9sd2).
Supporting Information
Filename | Description |
---|---|
jbi14385-sup-0001-DataS1.docxWord 2007 document , 1.1 MB |
Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allen, J. M., Germain-Aubrey, C. C., Barve, N., Neubig, K. M., Majure, L. C., Laffan, S. W., Mishler, B. D., Owens, H. L., Smith, S. A., Whitten, W. M., Abbott, J. R., Soltis, D. E., Guralnick, R. & Soltis, P. S. (2019). Spatial phylogenetics of Florida vascular plants: The effects of calibration and uncertainty on diversity estimates. iScience, 11, 57–70. https://doi.org/10.1016/j.isci.2018.12.002
- Amatulli, G., Domisch, S., Tuanmu, M., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). Data descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040. https://doi.org/10.1038/sdata.2018.40
- Anderson, L. E. (1971). Geographical relationships of the mosses of the southern Appalachian Mountains. In P. C. Holt (Ed.), The distributional history of the biota of the southern Appalachians (pp. 101–115). Virginia Polytechnic Institute and State University.
- Anderson, L. E., & Zander, R. H. (1973). The mosses of the southern blue Ridge Province and their phytogeographic relationship. Journal of the Elisha Mitchell Scientific Society, 89, 15–60.
- Avise, J. C. (2000). Phylogeography: The history and formation of species. Harvard University Press.
10.1046/j.1365-294X.2003.01731.x Google Scholar
- Baldwin, B. G., Thornhill, A. H., Freyman, W. A., Ackerly, D. D., Kling, M. M., Morueta-Holme, N., & Mishler, B. D. (2017). Species richness and endemism in the native flora of California. American Journal of Botany, 104, 487–501.
- Borowiec, M. L. (2016). AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4, e1660. https://doi.org/10.7717/peerj.1660
- Brown, J. W., Walker, J. F., & Smith, S. A. (2017). Phyx: Phylogenetic tools for unix. Bioinformatics, 33(12), 1886–1888. https://doi.org/10.1093/bioinformatics/btx063
- Brunsfeld, S. J., Sullivan, J., Soltis, D. E., & Soltis, P. S. (2001). A comparative phylogeography of northwestern North America: A synthesis. In J. Silvertown & J. Antonovics (Eds.), Integrating ecology and evolution in a spatial context (pp. 319–340). Blackwell Science.
- Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973.
- Carter, B. E. (2012). Species delimitation and cryptic diversity in the moss genus Scleropodium (Brachytheciaceae). Molecular Phylogenetics & Evolution, 63, 891–903.
- Carter, B. E., Shaw, B., & Shaw, A. J. (2016). Endemism in the moss flora of North America. American Journal of Botany, 103, 769–779.
- Carter, B. E. (2021). The roles of dispersal limitation, climatic niches and glacial history in the development of endemism in the North American bryophyte flora. American Journal of Botany, 108, 1–13.
- Collart, F., Wang, J., Patiño, J., Hagborg, A., Söderström, L., Goffinet, B., Magain, N., … Vanderpoorten, A. (2021). Macroclimatic structuring of spatial phylogenetic turnover in liverworts. Ecography, 44, 1474–1485. https://doi.org/10.1111/ecog.05659
- Crum, H. A. (1972). The geographic origins of the mosses of North America's deciduous forest. Journal of the Hattori Botanical Laboratory, 35, 269–298.
- Crum, H. A., & Anderson, L. E. (1981). The mosses of eastern North America. Columbia University Press.
- Earl, C., Belitz, M. W., Laffan, S. W., Barve, V., Barve, N., Soltis, D. E., Allen, J. M., Soltis, P., … Guralnick, R. (2021). Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across north America. iScience, 24, 102239.
- Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.
- Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
- Flora of North America Editorial Committee (Ed.). (2007). Flora of North America north of Mexico (Vol. 27). Oxford University Press.
- Flora of North America Editorial Committee (Ed.). (2014). Flora of North America north of Mexico (Vol. 28). Oxford University Press.
- Frahm, J., & Vitt, D. (1993). Comparisons between the mossfloras of North America and Europe. Nova Hedwigia, 56, 307–333.
- Geffert, J. L., Frahm, J. P., Barthlott, W., & Mutke, J. (2013). Global moss diversity: Spatial and taxonomic patterns of species richness. Journal of Bryology, 35, 1–11.
- González-Orozco, C. E., Ebach, M. C., Laffan, S., Thornhill, A. H., Knerr, N. J., Schidt-Lebuhn, A. N., Cargill, C. C., … Miller, J. T. (2014). Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PLoS One, 9, e92558.
- Graham, A. (1999). Late cretaceous and Cenozoic history of North America vegetation north of Mexico. Oxford University Press.
10.1093/oso/9780195113426.001.0001 Google Scholar
- Huang, S., Stoof-Leichsenring, K. R., Liu, S., Courtin, J., Andreev, A. A., Pestryakova, L. A., & Herzschuh, U. (2021). Plant sedimentary ancient DNA from far East Russia covering the last 28,000 years reveasl different assembly rules in cold and warm climates. Frontiers in Ecology and Evolution, 9, 763747. https://doi.org/10.3389/fevo.2021.763747
- Huttunen, S., Hedenäs, L., Ignatov, M. S., Devos, N., & Vanderpoorten, A. (2008). Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). American Journal of Botany, 95, 720–730.
- Jenkins, C. N., Van Houtan, K. S., Pimm, S. L., & Sexton, J. O. (2015). US protected lands mismatch biodiversity priorities. Proceedings of the National Academy of Sciences of the United States of America, 112, 5081–5086.
- Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
- Kling, M. M., Mishler, B. D., Thornhill, A. H., Baldwin, B. G., & Ackerly, D. D. (2018). Facets of phylodiversity: Evolutionary diversification, divergence and survival as conservation targets. Philosophical Transactions of the Royal Society B-Biological Sciences, 374, 20170397.
- Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, E., Désamoré, A., Heinrichs, J., … Shaw, A. J. (2014). Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications, 5, 6134.
- Laffan, S. W., Lubarsky, E., & Rosauer, D. F. (2010). Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography, 33, 643–647.
- Laffan, S. W., Rosauer, D. F., Di Virgilio, G., Miller, J. T., Gonzales-Orozco, C., Knerr, N., Thornhill, A. H., & Mishler, B. D. (2016). Range-weighted metrics of species and phylogenetic turnover can better resolve biogeographic breaks and boundaries. Methods in Ecology and Evolution, 7, 580–588.
- Lara, F., Draper, I., Flagmeier, M., Calleja, J. A., Mazimpaka, V., & Garilleti, R. (2020). Let's make Pulvigera great again- recircumscription of a misunderstood group of Orthotrichaceae that diversified in North America. Botanical Journal of the Linnean Society, 193, 180–206.
- Liu, Y., Johnson, M. G., Cox, C. J., Medina, R., Devos, N., Vanderpoorten, A., Hedenäs, L., … Goffinet, B. (2019). Resolution of the ordinal phylogeny of mosses using targeted exons from organeller and nuclear genomes. Nature Communications, 10, 1485.
- Manchester, S. R. (1999). Biogeographical relationships of north American tertiary floras. Annals of the Missouri Botanical Garden, 86, 472–522.
- Manos, P. S., & Meireles, J. E. (2015). Biogeographic analysis of the woody plants of the southern Appalachians: Implications for the origin of a regional flora. American Journal of Botany, 102, 780–804.
- Medina, R., Lara, F., Goffinet, B., Garilleti, R., & Mazimpaka, V. (2012). Integrative taxonomy successfully resolves the pseudo-cryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon, 61, 1180–1198.
- Medina, R., Lara, F., Goffinet, B., Garilleti, R., & Mazimpaka, V. (2013). Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validated by morphological and molecular approaches. Taxon, 62, 1133–1152.
- Mienna, I. M., Speed, J. D. M., Bendiksby, M., Thornhill, A. H., Mishler, B. D., & Martin, M. D. (2019). Differential patterns of floristic phylogenetic diversity across a post-glacial landscape. Journal of Biogeography, 47, 915–926.
- Mishler, B. D., & Oliver, M. J. (2009). Putting Physcomitrella patens on the tree of life: The evolution and ecology of mosses. Annual Plant Reviews, 36, 1–15.
- Mishler, B. D., Knerr, N., González-Orozco, C. E., Thornhill, A. H., Laffan, S. W., & Miller, J. T. (2014). Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian acacia. Nature Communications, 5, 4473.
- Mishler, B. D., Guralnick, R., Soltis, P. S., Smith, S. A., Soltis, D. E., Barve, N., Allen, J. M., & Laffan, S. W. (2020). Spatial phylogenetics of the north American flora. Journal of Systematics and Evolution, 58, 393–405.
- Norris, D. H., & Shevock, J. (2004). Contributions toward a bryoflora of California I. a specimen-based catalog of the mosses. Madrono, 51, 1–131.
- Proctor, M. C. F. (2000). Physiological ecology. In B. Goffinet & A. J. Shaw (Eds.), Bryophyte biology (pp. 225–247). Cambridge University Press.
10.1017/CBO9781139171304.009 Google Scholar
- Proctor, M. C. F., Oliver, M. J., Wood, A. J., Alpert, P., Stark, L. R., Cleavitt, N. L., & Mishler, B. D. (2007). Desiccation-tolerance in bryophytes: A review. The Bryologist, 110, 595–621.
- Patiño, J., & Vanderpoorten, A. (2018). Bryophyte biogeography. Critical Reviews in Plant Sciences, 37, 175–209.
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, S. C., & Cook, L. G. (2009). Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18, 4061–4072.
- Rousset, F., & Ferdy, J. (2014). Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography, 37, 781–790. https://doi.org/10.1111/ecog.00566
- Schofield, W. B. (1980). Phytogeography of the mosses of North America (north of Mexico). In R. J. Taylor & A. E. Leviton (Eds.), The mosses of North America (pp. 131–170). Pacific Division of the American Advancement of Science.
- Shaw, A. J., Devos, N., Cox, C. J., & Shaw, B. (2016). Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Annals of Botany, 118, 185–196.
- Smith, S. A., & Walker, J. F. (2018). PyPHLAWD: A python tool for phylogenetic dataset construction. Methods in. Ecology and Evolution, 10, 104–108. https://doi.org/10.1111/2041-210X.13096
- Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S., & Soltis, P. S. (2006). Comparative phylogeography of unglaciated eastern North America. Molecular Ecology, 15, 4261–4293.
- Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Stebbins, G. L. (1952). Aridity as a stimulus to plant evolution. American Naturalist, 86, 33–44.
- Steere, W. C. (1976). Ecology, phytogeography and floristics of arctic Alaskan bryophytes. Journal of the Hattori Botanical Laboratory, 41, 47–72.
- Tan, B. C., & Pócs, T. (2000). Bryogeography and conservation of bryophytes. In A. J. Shaw & B. Goffinet (Eds.), Bryophyte biology (pp. 403–448). Cambridge University Press.
10.1017/CBO9781139171304.014 Google Scholar
- Thornhill, A. H., Mishler, B. D., Knerr, N., Gonzalez-Orozco, C. E., Costion, C. M., Crayn, D. M., Laffan, S. W., & Miller, J. T. (2016). Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. Journal of Biogeography, 43, 2085–2098.
- Thornhill, A. H., Baldwin, B. G., Freyman, W. A., Nosratinia, S., Kling, M. M., Morueta-Holme, N., Madsen, T. P., … Mishler, B. D. (2017). Spatial phylogenetics of the native California flora. BMC Biology, 15, 96. https://doi.org/10.1186/s12915-017-0435-x
- Tiffney, B. H. (1985a). Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. Journal of the Arnold Arboretum, 66, 73–94.
- Tiffney, B. H. (1985b). The Eocene North Atlantic land bridge: Its importance in tertiary and modern phytogeography of the northern hemisphere. Journal of the Arnold Arboretum, 66, 243–273.
- Violle, C., Nemergut, D. R., Pu, Z., & Jiang, L. (2011). Phylogenetic limiting similarity and competitive exclusion. Ecology Letters, 14, 782–787.
- Wall, D. (2005). Origin and rapid diversification of a tropical moss. Evolution, 59, 1413–1424.
- Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.
- Wolfe, J. A. (1975). Some aspects of plant geography of the northern hemisphere during the late cretaceous and tertiary. Annals of the Missouri Botanical Garden, 62, 264–279.