Climatic niche limits and community-level vulnerability of obligate symbioses
Corresponding Author
Robert J. Smith
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
Correspondence
Robert J. Smith, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
Email: [email protected]
Search for more papers by this authorSarah Jovan
Forest Inventory and Analysis Program, USDA Forest Service, PNW Research Station, Portland, OR, USA
Search for more papers by this authorBruce McCune
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
Search for more papers by this authorCorresponding Author
Robert J. Smith
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
Correspondence
Robert J. Smith, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
Email: [email protected]
Search for more papers by this authorSarah Jovan
Forest Inventory and Analysis Program, USDA Forest Service, PNW Research Station, Portland, OR, USA
Search for more papers by this authorBruce McCune
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
Search for more papers by this authorAbstract
Aim
Communities with many species at their climatic niche limits may be vulnerable to species losses, suggesting that niche-based measures can inform vulnerability assessments. We aimed to quantify spatial variation in community-level vulnerability indices based on niche limits, not just central tendencies, to predict where climate changes will produce rapid, pronounced shifts in ecological communities.
Location
North America.
Taxon
Epiphytic lichenized fungi.
Methods
We integrated broad-extent herbarium data (46,343 North American sites, for estimation of realized niches) with systematic, whole-community macrolichen surveys from the U.S. Forest Inventory and Analysis inventory (6,474 U.S. sites, for standardized vulnerability estimation). We introduce three niche-based vulnerability indices describing (a) percentage of vulnerable species occurring at their upper climatic limits, (b) community-mean percentile, and (c) deviation of local conditions from community-mean upper limits. We also performed sensitivity analyses and evaluated vulnerability in future climate change scenarios.
Results
Sensitivity of indices to uncertainty in climate variables was minor. Present-day vulnerability was greatest in north-central California, in the Southwest along the western Colorado Plateau, and on the Southeastern coastal plain—locations where climatically-induced compositional changes will become most evident. Under future warming scenarios (+0.5 to + 3.6°C increases), the percentage of U.S. epiphytic macrolichen communities exceeding critical values grew from about 2%–20%.
Main conclusions
In all scenarios the most vulnerable communities were concentrated in low-elevation and southerly locations, suggesting that many ostensibly “warm-adapted” communities may be close to exceeding their climatic limits. Findings indicate that warming and moisture changes will modify community compositions through the local loss of intolerant species pushed beyond their niche limits. Assessing vulnerability of bioindicators such as lichens will help prioritize locations where the greatest climate-induced changes in species distributions and diversity will occur.
Open Research
DATA AVAILABILITY STATEMENT
All data (species occurrences, community inventories and climate data) and computer code (R format) are available in a self-contained, open-access, public repository at: https://github.com/phytomosaic/vuln.
Supporting Information
Filename | Description |
---|---|
jbi13719-sup-0001-AppendixS1.docxWord document, 19.4 KB | |
jbi13719-sup-0002-AppendixS2.docxWord document, 146.8 KB | |
jbi13719-sup-0003-AppendixS3.docxWord document, 38 KB | |
jbi13719-sup-0004-AppendixS4.pdfPDF document, 162.2 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allen, J. L., & Lendemer, J. C. (2016). Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation, 25, 555–568. https://doi.org/10.1007/s10531-016-1071-4
- Aptroot, A., & van Herk, C. M. (2007). Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution, 146, 293–298. https://doi.org/10.1016/j.envpol.2006.03.018
- Barkman, J. J. (1958). Phytosociology and ecology of cryptogamic epiphytes – Including a taxonomic survey and description of their vegetation units in Europe. Assen, The Netherlands: Van Gorcum and Company.
- Berryman, S., & McCune, B. (2006). Estimating epiphytic macrolichen biomass from topography, stand structure and lichen community data. Journal of Vegetation Science, 17, 157–170. https://doi.org/10.1111/j.1654-1103.2006.tb02435.x
- Blonder, B., Moulton, D. E., Blois, J., Enquist, B. J., Graae, B. J., Macias-Fauria, M., … Svenning, J.-C. (2017). Predictability in community dynamics. Ecology Letters, 20, 293–306. https://doi.org/10.1111/ele.12736
- Cahill, A. E., Aiello-Lammens, M. E., Caitlin Fisher-Reid, M., Hua, X., Karanewsky, C. J., Ryu, H. Y., … Wiens, J. J. (2014). Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. Journal of Biogeography, 41, 429–442. https://doi.org/10.1111/jbi.12231
- Coyle, J. R., & Hurlbert, A. H. (2016). Environmental optimality, not heterogeneity, drives regional and local species richness in lichen epiphytes. Global Ecology and Biogeography, 25, 406–417. https://doi.org/10.1111/geb.12420
- Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the USA, 105, 6668–6672. https://doi.org/10.1073/pnas.0709472105
- Devictor, V., Julliard, R., Couvet, D., & Jiguet, F. (2008). Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society of London B: Biological Sciences, 275, 2743–2748.
- Elix, J. A. (1993). Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. The Bryologist, 96, 359–383. https://doi.org/10.2307/3243867
- Ellenberg, H. (1974). Zeigerwerte der Gefässpflanzen Mitteleuropas [Indicator values of vascular plants in central Europe]. Göttingen, Germany: Scripta Geobotanica.
- Ellis, C. J. (2013). A risk-based model of climate change threat: Hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany-Botanique, 91, 1–11. https://doi.org/10.1139/cjb-2012-0171
- Ellis, C. J., Yahr, R., & Coppins, B. J. (2009). Local extent of old-growth woodland modifies epiphyte response to climate change. Journal of Biogeography, 36, 302–313. https://doi.org/10.1111/j.1365-2699.2008.01989.x
- Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Fosaa, A. M., Gould, W. A., Hermanutz, L., … Walker, M. D. (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the USA, 112, 448–452. https://doi.org/10.1073/pnas.1410088112
- Engemann, K., Enquist, B. J., Sandel, B., Boyle, B., Jørgensen, P. M., Morueta-Holme, N., … Svenning, J.-C. (2015). Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot. Ecology and Evolution, 5, 807–820. https://doi.org/10.1002/ece3.1405
- Fačkovcová, Z., Senko, D., Svitok, M., & Guttová, A. (2017). Ecological niche conservatism shapes the distributions of lichens: Geographical segregation does not reflect ecological differentiation. Preslia, 89, 63–85. https://doi.org/10.23855/preslia.2017.063
- Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R., & Clark, D. B. (2013). Compositional shifts in Costa Rican forests due to climate-driven species migrations. Global Change Biology, 19, 3472–3480. https://doi.org/10.1111/gcb.12300
- Feeley, K. J., & Silman, M. R. (2010). Biotic attrition from tropical forests correcting for truncated temperature niches. Global Change Biology, 16, 1830–1836. https://doi.org/10.1111/j.1365-2486.2009.02085.x
- Feuerer, T., & Hawksworth, D. L. (2007). Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan's floristic regions. Biodiversity and Conservation, 16, 85–98. https://doi.org/10.1007/s10531-006-9142-6
- Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., … Mace, G. M. (2013). Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE, 8, e65427. https://doi.org/10.1371/journal.pone.0065427
- Follmann, G. (1995). On the impoverishment of the lichen flora and the retrogression of the lichen vegetation in coastal central and northern Chile during the last decades. Cryptogamic Botany, 5, 224–231.
- Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., … Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111–115. https://doi.org/10.1038/nclimate1329
- Greenwood, S., Chen, J.-C., Chen, C.-T., & Jump, A. S. (2016). Community change and species richness reductions in rapidly advancing tree lines. Journal of Biogeography, 43, 2274–2284. https://doi.org/10.1111/jbi.12776
- Hauck, M. (2009). Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in North-Western Central Europe. Global Change Biology, 15, 2653–2661. https://doi.org/10.1111/j.1365-2486.2009.01968.x
- IPCC [Intergovernmental Panel on Climate Change] (2014). Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
- Jezkova, T., & Wiens, J. J. (2016). Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B, 283, 20162104. https://doi.org/10.1098/rspb.2016.2104
- Kershaw, K. A. (1983). The thermal operating-environment of a lichen. The Lichenologist, 15, 191–207. https://doi.org/10.1017/S0024282983000286
- Larsson, P., & Gauslaa, Y. (2011). Rapid juvenile development in old forest lichens. Botany-Botanique, 89, 65–72. https://doi.org/10.1139/B10-086
- Leavitt, S. D., Kirika, P. M., Paz, G. A. D., Huang, J.-P., Hur, J.-S., Elix, J. A., … Lumbsch, H. T. (2018). Assessing phylogeny and historical biogeography of the largest genus of lichen-forming fungi, Xanthoparmelia (Parmeliaceae, Ascomycota). The Lichenologist, 50, 299–312.
- Leavitt, S. D., & Lumbsch, H. T. (2016). Ecological biogeography of lichen-forming fungi. In I. S. Druzhinina, & C. P. Kubicek (Eds.), Environmental and microbial relationships (pp. 15–37). Switzerland: Springer International.
10.1007/978-3-319-29532-9_2 Google Scholar
- Lendemer, J. C., & Allen, J. L. (2014). Lichen biodiversity under threat from sea-level rise in the Atlantic coastal plain. BioScience, 64, 923–931. https://doi.org/10.1093/biosci/biu136
- MacFarlane, J. D., & Kershaw, K. A. (1978). Thermal sensitivity in lichens. Science, 201, 739–741. https://doi.org/10.1126/science.201.4357.739
- Martínez, I., Flores, T., Otálora, M. A. G., Belinchón, R., Prieto, M., Aragón, G., & Escudero, A. (2012). Multiple-scale environmental modulation of lichen reproduction. Fungal Biology, 116, 1192–1201. https://doi.org/10.1016/j.funbio.2012.09.005
- McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Gleneden Beach, OR: MjM Software Design.
10.1046/j.1439-0310.2002.00768.x Google Scholar
- McMurray, J. A., Roberts, D. W., & Geiser, L. H. (2015). Epiphytic lichen indication of nitrogen deposition and climate in the northern Rocky Mountains, USA. Ecological Indicators, 49, 154–161. https://doi.org/10.1016/j.ecolind.2014.10.015
- Melillo, J. M., Richmond, T. C., & Yohe, G. W. (2014). Climate change impacts in the United States: The third national climate assessment. Washington, DC: U.S. Global Change Research Program.
10.7930/J0Z31WJ2 Google Scholar
- Overgaard, J., Kearney, M. R., & Hoffmann, A. A. (2014). Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 20, 1738–1750.
- Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972. https://doi.org/10.1126/science.1100103
- Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., … Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215–224. https://doi.org/10.1038/nclimate2448
- Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
- Perez, T. M., Stroud, J. T., & Feeley, K. J. (2016). Thermal trouble in the tropics. Science, 351, 1392–1393. https://doi.org/10.1126/science.aaf3343
- Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.
10.23943/princeton/9780691136868.001.0001 Google Scholar
- R Development Core Team. (2018). R: A language and environment for statistical computing. Version 3.5.1. Vienna, Austria: R Foundation for Statistical Computing.
- Ramensky, L., Tsatsenkin, I. A., Čižikov, O. N., & Antipov, N. A. (1956). Экoлoгичecкaя oцeнкa кopмoвыx yгoдий пo pacтитeльнoмy пoкpoвy [Ecological evaluation of grazed lands by their vegetation]. Moscow, Russia: Selkhozgiz.
- Rodríguez-Sánchez, F., De Frenne, P., & Hampe, A. (2012). Uncertainty in thermal tolerances and climatic debt. Nature Climate Change, 2, 636–637. https://doi.org/10.1038/nclimate1667
- Root, H. T., McCune, B., & Jovan, S. (2014). Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA. The Bryologist, 117, 241–252. https://doi.org/10.1639/0007-2745-117.3.241
- Saupe, E. E., Hendricks, J. R., Portell, R. W., Dowsett, H. J., Haywood, A., Hunter, S. J., & Lieberman, B. S. (2014). Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society B: Biological Sciences, 281, 20141995.
- Savage, J., & Vellend, M. (2015). Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography, 38, 546–555. https://doi.org/10.1111/ecog.01131
- Smith, R. J., Jovan, S., & McCune, B. (2017). Lichen Communities as Climate Indicators in the US Pacific States. General Technical Report PNW-GTR-952. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
- Smith, R. J., Nelson, P. R., Jovan, S., Hanson, P. J., & McCune, B. (2018). Novel climates reverse carbon uptake of atmospherically dependent epiphytes: Climatic constraints on the iconic boreal forest lichen Evernia mesomorpha. American Journal of Botany, 105, 266–274.
- Snover, A. K., Mantua, N. J., Littell, J. S., Alexander, M. A., Mcclure, M. M., & Nye, J. (2013). Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions: Choosing and using climate-change scenarios. Conservation Biology, 27, 1147–1157. https://doi.org/10.1111/cobi.12163
- Søchting, U. (2004). Flavoparmelia caperata–a probable indicator of increased temperatures in Denmark. Graphis Scripta, 15, 53–56.
- Song, L., Liu, W.-Y., & Nadkarni, N. M. (2012). Response of non-vascular epiphytes to simulated climate change in a montane moist evergreen broad-leaved forest in southwest China. Biological Conservation, 152, 127–135. https://doi.org/10.1016/j.biocon.2012.04.002
- Stanton, D. E., Huallpa-Chávez, J., Villegas, L., Villasante, F., Armesto, J., Hedin, L. O., & Horn, H. (2014). Epiphytes improve host plant water use by microenvironment modification. Functional Ecology, 28, 1274–1283. https://doi.org/10.1111/1365-2435.12249
- Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J., & Bates, A. E. (2015). Thermal biases and vulnerability to warming in the world's marine fauna. Nature, 528, 88–92. https://doi.org/10.1038/nature16144
- Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823–1830. https://doi.org/10.1098/rspb.2010.1295
- Tewksbury, J. J., Huey, R. B., & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science, 320, 1296–1297.
- Tripp, E. A., Lendemer, J. C., Barberán, A., Dunn, R. R., & Fierer, N. (2016). Biodiversity gradients in obligate symbiotic organisms: Exploring the diversity and traits of lichen propagules across the United States. Journal of Biogeography, 43, 1667–1678. https://doi.org/10.1111/jbi.12746
- van den Broeck, D. (2010). Schriftmossen (Opegrapha) en andere lichenen met een Trentepohlia-photobiont in opmars in Vlaanderen (België). Dumortiera, 98, 6–10.
- van Herk, C. M., Aptroot, A., & van Dobben, H. F. (2002). Long-term monitoring in the Netherlands suggests that lichens respond to global warming. The Lichenologist, 34, 141–154. https://doi.org/10.1006/lich.2002.0378
- Vellend, M. (2016). The theory of ecological communities. Princeton, NJ: Princeton University Press.
10.1515/9781400883790 Google Scholar
- Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 11, e0156720. https://doi.org/10.1371/journal.pone.0156720
- Werth, S., Wagner, H. H., Gugerli, F., Holderegger, R., Csencsics, D., Kalwij, J. M., & Scheidegger, C. (2006). Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology, 87, 2037–2046. https://doi.org/10.1890/0012-9658(2006)87[2037:QDAELI]2.0.CO;2
- Whittaker, R. H. (1967). Gradient analysis of vegetation. Biological Reviews, 49, 207–264. https://doi.org/10.1111/j.1469-185X.1967.tb01419.x
- Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the USA, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104
- Wirth, V. (2010). Ökologische Zeigerwerte von Flechten – Erweiterte und Aktualisierte Fassung [Ecological indicator values of lichens – enlarged and updated species list]. Herzogia, 23, 229–248. https://doi.org/10.13158/heia.23.2.2010.229
- Wolfskeel, D. W., & van Herk, C. M. (2000). Heterodermia obscurata Nieuw Voor Nederland. Buxbaumiella, 52, 47–50.
- Zotz, G., & Bader, M. Y. (2009). Epiphytic plants in a changing world: Global-change effects on vascular and non-vascular epiphytes. Progress in Botany, 70, 147–170.
- Zotz, G., Schultz, S., & Rottenberger, S. (2003). Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora – Morphology, Distribution, Functional Ecology of Plants, 198, 71–77. https://doi.org/10.1078/0367-2530-00077
10.1078/0367-2530-00077 Google Scholar
- Zwillinger, D. (2012). CRC standard probability and statistics tables and formulae ( 32nd ed.). Boca Raton, FL: CRC Press.