Transgenerational effects of the maternal gestational environment on the post-natal performance of beef cattle: A reaction norm approach
Corresponding Author
Mário Luiz Santana
Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
Correspondence
Mário Luiz Santana, Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Av. dos Estudantes, 5055, Cidade Universitária, Rondonópolis – MT, CEP 78736-900, Brazil.
Email: [email protected]
Search for more papers by this authorAnnaiza Braga Bignardi
Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
Search for more papers by this authorRodrigo Junqueira Pereira
Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
Search for more papers by this authorJosé Bento Sterman Ferraz
Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
Search for more papers by this authorJoanir Pereira Eler
Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
Search for more papers by this authorCorresponding Author
Mário Luiz Santana
Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
Correspondence
Mário Luiz Santana, Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Av. dos Estudantes, 5055, Cidade Universitária, Rondonópolis – MT, CEP 78736-900, Brazil.
Email: [email protected]
Search for more papers by this authorAnnaiza Braga Bignardi
Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
Search for more papers by this authorRodrigo Junqueira Pereira
Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
Search for more papers by this authorJosé Bento Sterman Ferraz
Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
Search for more papers by this authorJoanir Pereira Eler
Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
Search for more papers by this authorAbstract
In tropical beef cattle production systems, animals are commonly raised on pastures, exposing them to potential stressors. The end of gestation typically overlaps with a dry period characterized by limited food availability. Late gestation is pivotal for fetal development, making it an ideal scenario for inter- and transgenerational effects of the maternal gestational environment. Intergenerational effects occur due to exposure during gestation, impacting the development of the embryo and its future germline. Transgenerational effects, however, extend beyond direct exposure to the subsequent generations. The objective of the present study was to verify these effects on the post-natal performance of zebu beef cattle. We extended the use of a reaction norm model to identify genetic variation in the animals' responses to transgenerational effects. The inter- and transgenerational effects were predominantly positive (−0.09% to 19.74%) for growth and reproductive traits, indicating improved animal performance on the phenotypic scale in more favourable maternal gestational environments. Additionally, these effects were more pronounced in the reproductive performance of females. On average, the ratio of direct additive genetic variances of the slope and intercept of the reaction norm ranged from 1.23% to 3.60% for direct and from 10.17% to 11.42% for maternal effects. Despite its relatively modest magnitude, this variation proved sufficient to prompt modifications in parameter estimates. The average percentage variation of direct heritability estimates ranged from 19.3% for scrotal circumference to 33.2% for yearling weight across the environmental descriptors evaluated. Genetic correlations between distant environments for the studied traits were generally high for direct effects and far from unity for maternal effects. Changes in EBV rankings of sires across different gestational environments were also observed. Due to the multifaceted nature of inter- and transgenerational effects of the maternal gestational environment on various traits of beef cattle raised under tropical pasture conditions, they should not be overlooked by producers and breeders. There were differences in the specific response of beef cattle to variations in the quality of the maternal gestational environment, which can be partially explained by transgenerational epigenetic inheritance. Adopting a reaction norm model to capture a portion of the additive variance induced by inter- or transgenerational effects could be an alternative for future research and animal genetic evaluations.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no competing interests.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
jbg12883-sup-0001-TableS1.docxWord 2007 document , 23 KB |
Table S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alves, M. S., Bignardi, A. B., Zuim, D. M., Silva, J. A., Cardoso, M. G. R., Piccoli, M. L., Roso, V. M., Carvalheiro, R., El Faro, L., Pereira, R. J., & Santana, M. L. (2022). Thermal stress during late gestation impairs postnatal growth and provides background for genotype-environment interaction in Hereford-Braford and Angus-Brangus cattle. Livestock Science, 263, 105027. https://doi.org/10.1016/j.livsci.2022.105027
- Amorín, R., Liu, L., Moriel, P., DiLorenzo, N., Lancaster, P. A., & Peñagaricano, F. (2023). Maternal diet induces persistent DNA methylation changes in the muscle of beef calves. Scientific Reports, 13(1), 1–8. https://doi.org/10.1038/s41598-023-28896-3
- Barcelos, S. d. S., Nascimento, K. B., Silva, T. E., Mezzomo, R., Alves, K. S., de Souza Duarte, M., & Gionbelli, M. P. (2022). The effects of prenatal diet on calf performance and perspectives for fetal programming studies: A meta-analytical investigation. Animals, 12(16), 2145. https://doi.org/10.3390/ani12162145
- Bauman, D. E., & Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science, 63(9), 1514–1529. https://doi.org/10.3168/jds.S0022-0302(80)83111-0
- Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal Frontiers, 9(1), 62–68. https://doi.org/10.1093/af/vfy033
- Cardoso, F. F., & Tempelman, R. J. (2012). Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction. Journal of Animal Science, 90(7), 2130–2141. https://doi.org/10.2527/jas.2011-4333
- Carvalheiro, R., Costilla, R., Neves, H. H. R., Albuquerque, L. G., Moore, S., & Hayes, B. J. (2019). Unraveling genetic sensitivity of beef cattle to environmental variation under tropical conditions. Genetics Selection Evolution, 51(1), 29. https://doi.org/10.1186/s12711-019-0470-x
- Carvalho Filho, I., Silva, D. A., Teixeira, C. S., Silva, T. L., Mota, L. F. M., Albuquerque, L. G., & Carvalheiro, R. (2022). Heteroscedastic reaction norm models improve the assessment of genotype by environment interaction for growth, reproductive, and visual score traits in Nellore cattle. Animals, 12(19), 2613. https://doi.org/10.3390/ani12192613
- Chen, Z., Chu, S., Xu, X., Jiang, J., Wang, W., Shen, H., Li, M., Zhang, H., Mao, Y., & Yang, Z. (2019). Analysis of longissimus muscle quality characteristics and associations with DNA methylation status in cattle. Genes & Genomics, 41(10), 1147–1163. https://doi.org/10.1007/S13258-019-00844-4/FIGURES/10
- Chiaia, H. L. J., de Lemos, M. V. A., Venturini, G. C., Aboujaoude, C., Berton, M. P., Feitosa, F. B., Carvalheiro, R., Albuquerque, L. G., de Oliveira, H. N., & Baldi, F. (2015). Genotype × environment interaction for age at first calving, scrotal circumference, and yearling weight in Nellore cattle using reaction norms in multitrait random regression models. Journal of Animal Science, 93(4), 1503–1510. https://doi.org/10.2527/jas.2014-8217
- Costa, T. C., Du, M., Nascimento, K. B., Galvão, M. C., Meneses, J. A. M., Schultz, E. B., Gionbelli, M. P., & Duarte, M. S. (2021). Skeletal muscle development in postnatal beef cattle resulting from maternal protein restriction during mid-gestation. Animals, 11(3), 1–14. https://doi.org/10.3390/ani11030860
- David, I., & Ricard, A. (2019). A unified model for inclusive inheritance in livestock species. Genetics, 212(4), 1075–1099. https://doi.org/10.1534/genetics.119.302375
- Daxinger, L., & Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews Genetics, 13(3), 153–162. https://doi.org/10.1038/nrg3188
- de Paula Freitas, A., Júnior, M. L. S., Schenkel, F. S., Mercadante, M. E. Z., dos Santos Goncalves Cyrillo, J. N., & de Paz, C. C. P. (2021). Different selection practices affect the environmental sensitivity of beef cattle. PLoS One, 16(4), e0248186. https://doi.org/10.1371/JOURNAL.PONE.0248186
- Del Corvo, M., Lazzari, B., Capra, E., Zavarez, L., Milanesi, M., Utsunomiya, Y. T., Utsunomiya, A. T. H., Stella, A., de Paula Nogueira, G., Garcia, J. F., & Ajmone-Marsan, P. (2021). Methylome patterns of cattle adaptation to heat stress. Frontiers in Genetics, 12, 633132. https://doi.org/10.3389/FGENE.2021.633132/BIBTEX
- Ferraz, J. B. S., & Felício, P. E. (2010). Production systems – An example from Brazil. Meat Science, 84(2), 238–243. https://doi.org/10.1016/J.MEATSCI.2009.06.006
- Funston, R. N., & Summers, A. F. (2013). Epigenetics: Setting up lifetime production of beef cows by managing nutrition. Annual Review of Animal Biosciences, 1, 339–363. https://doi.org/10.1146/annurev-animal-031412-103649
- Geweke, J. (1992). [Statistics, probability and chaos]: Comment: Inference and prediction in the presence of uncertainty and determinism. Statistical Science, 7(1), 94–101. https://doi.org/10.1214/SS/1177011446
10.1214/ss/1177011446 Google Scholar
- Goddard, M. E., & Whitelaw, E. (2014). The use of epigenetic phenomena for the improvement of sheep and cattle. Frontiers in Genetics, 5, 247. https://doi.org/10.3389/fgene.2014.00247
- González-Recio, O. (2012). Epigenetics: A new challenge in the post-genomic era of livestock. Frontiers in Genetics, 2, 106. https://doi.org/10.3389/fgene.2011.00106
- González-Recio, O., Ugarte, E., & Bach, A. (2012). Trans-generational effect of maternal lactation during pregnancy: A Holstein cow model. PLoS One, 7(12), e51816. https://doi.org/10.1371/journal.pone.0051816
- Greenwood, P., Clayton, E., & Bell, A. (2017). Developmental programming and beef production. Animal Frontiers, 7(3), 38–47. https://doi.org/10.2527/af.2017-0127
- Halli, K., Brügemann, K., Bohlouli, M., & König, S. (2020). Time-lagged and acute impact of heat stress on production and fertility traits in the local dual-purpose cattle breed “rotes Höhenvieh” under pasture-based conditions. Translational Animal Science, 4(3), 1–12. https://doi.org/10.1093/tas/txaa148
- Hay, E. H., & Roberts, A. (2019). Genomic evaluation of genotype by prenatal nutritional environment interaction for maternal traits in a composite beef cattle breed. Livestock Science, 229, 118–125. https://doi.org/10.1016/j.livsci.2019.09.022
- Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157(1), 95–109. https://doi.org/10.1016/j.cell.2014.02.045
- IBGE. (2023). Pesquisa Trimestral Do Abate de Animais. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9203-pesquisas-trimestrais-do-abate-de-animais.html?edicao=37068&t=series-historicas
- Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84(2), 131–176. https://doi.org/10.1086/598822
- Kipp, C., Brügemann, K., Zieger, P., Mütze, K., Möcklinghoff-Wicke, S., König, S., & Halli, K. (2021). Across-generation effects of maternal heat stress during late gestation on production, female fertility and longevity traits in dairy cows. Journal of Dairy Research, 88(2), 147–153. https://doi.org/10.1017/S0022029921000327
- Kolmodin, R., & Bijma, P. (2004). Response to mass selection when the genotype by environment interaction is modelled as a linear reaction norm. Genetics Selection Evolution, 36(4), 435–454. https://doi.org/10.1051/gse:2004010
- Kolmodin, R., Strandberg, E., Madsen, P., Jensen, J., & Jorjani, H. (2002). Genotype by environment interaction in Nordic dairy cattle studied using reaction norms. Acta Agriculturae Scandinavica Section A Animal Science, 52, 11–24.
- Laporta, J., Ferreira, F. C., Ouellet, V., Dado-Senn, B., Almeida, A. K., De Vries, A., & Dahl, G. E. (2020). Late-gestation heat stress impairs daughter and granddaughter lifetime performance. Journal of Dairy Science, 103(8), 7555–7568. https://doi.org/10.3168/jds.2020-18154
- Li, Y., Carrillo, J. A., Ding, Y., He, Y., Zhao, C., Liu, J., Zan, L., & Song, J. (2019). DNA methylation, microRNA expression profiles and their relationships with transcriptome in grass-fed and grain-fed Angus cattle rumen tissue. PLoS One, 14(10), e0214559. https://doi.org/10.1371/JOURNAL.PONE.0214559
- Littlejohn, B. P., Price, D. M., Neuendorff, D. A., Carroll, J. A., Vann, R. C., Riggs, P. K., Riley, D. G., Long, C. R., Welsh, T. H., & Rande, R. D. (2018). Prenatal transportation stress alters genome-wide DNA methylation in suckling Brahman bull calves. Journal of Animal Science, 96(12), 5075–5099. https://doi.org/10.1093/JAS/SKY350
- Macciotta, N. P. P., Dimauro, C., Degano, L., Vicario, D., & Cesarani, A. (2023). A transgenerational study on the effect of great-granddam birth month on granddaughter EBV for production traits in Italian Simmental cattle. Journal of Dairy Science, 106(4), 2588–2597. https://doi.org/10.3168/jds.2022-22455
- Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., & Lee, D. H. (2002). BLUPF90 and related programs (BGF90). Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Vol. 28, No. 07.
- Mota, R. R., Tempelman, R. J., Lopes, P. S., Aguilar, I., Silva, F. F., & Cardoso, F. F. (2016). Genotype by environment interaction for tick resistance of Hereford and Braford beef cattle using reaction norm models. Genetics Selection Evolution, 48(1), 3. https://doi.org/10.1186/s12711-015-0178-5
- Ouellet, V., Laporta, J., & Dahl, G. E. (2020). Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology, 150, 471–479. https://doi.org/10.1016/j.theriogenology.2020.03.011
- Paiva, J. T., de Resende, M. D. V., Resende, R. T., de Oliveira, H. R., Silva, H. T., Caetano, G. C., Lopes, P. S., & Silva, F. F. (2018). Transgenerational epigenetic variance for body weight in meat quails. Journal of Animal Breeding and Genetics, 135(3), 178–185. https://doi.org/10.1111/jbg.12329
- Paradis, F., Wood, K. M., Swanson, K. C., Miller, S. P., McBride, B. W., & Fitzsimmons, C. (2017). Maternal nutrient restriction in mid-to-late gestation influences fetal mRNA expression in muscle tissues in beef cattle. BMC Genomics, 18(1), 1–14. https://doi.org/10.1186/s12864-017-4051-5
- Perez, M. F., & Lehner, B. (2019). Intergenerational and transgenerational epigenetic inheritance in animals. Nature Cell Biology, 21(2), 143–151. https://doi.org/10.1038/s41556-018-0242-9
- Santana, M. L., Bignardi, A. B., Eler, J. P., & Ferraz, J. B. S. (2016). Genetic variation of the weaning weight of beef cattle as a function of accumulated heat stress. Journal of Animal Breeding and Genetics, 133(2), 92–104. https://doi.org/10.1111/jbg.12169
- Santana, M. L., Bignardi, A. B., Pereira, R. J., Oliveira Junior, G. A., Freitas, A. P., Carvalheiro, R., Eler, J. P., Ferraz, J. B. S., Cyrillo, J. N. S. G., & Mercadante, M. E. Z. (2023). Genotype by prenatal environment interaction for postnatal growth of Nelore beef cattle raised under tropical grazing conditions. Animals, 13(14), 2321. https://doi.org/10.3390/ani13142321
- Santana, M. L., Eler, J. P., Oliveira, G. A., Bignardi, A. B., Pereira, R. J., & Ferraz, J. B. S. (2018). Genetic variation in Nelore heifer pregnancy due to heat stress during the breeding season. Livestock Science, 218, 101–107. https://doi.org/10.1016/j.livsci.2018.10.015
- Schalch Junior, F. J., Polizel, G. H. G., Cançado, F. A. C. Q., Fernandes, A. C., Mortari, I., Pires, P. R. L., Fukumasu, H., Santana, M. H. d. A., & Saran Netto, A. (2022). Prenatal supplementation in beef cattle and its effects on plasma metabolome of dams and calves. Metabolites, 12(4), 347. https://doi.org/10.3390/metabo12040347
- Skinner, M. K. (2008). What is an epigenetic transgenerational phenotype? F3 or F2. Reproductive Toxicology, 25(1), 2–6. https://doi.org/10.1016/J.REPROTOX.2007.09.001
- Tal, O., Kisdi, E., & Jablonka, E. (2010). Epigenetic contribution to covariance between relatives. Genetics, 184(4), 1037–1050. https://doi.org/10.1534/genetics.109.112466
- Thompson, R. P., Nilsson, E., & Skinner, M. K. (2020). Environmental epigenetics and epigenetic inheritance in domestic farm animals. Animal Reproduction Science, 220, 106316. https://doi.org/10.1016/j.anireprosci.2020.106316
- Triantaphyllopoulos, K. A., Ikonomopoulos, I., & Bannister, A. J. (2016). Epigenetics and inheritance of phenotype variation in livestock. Epigenetics & Chromatin, 9(1), 1–18. https://doi.org/10.1186/s13072-016-0081-5
- Varona, L., Munilla, S., Mouresan, E. F., González-Rodríguez, A., Moreno, C., & Altarriba, J. (2015). A bayesian model for the analysis of transgenerational epigenetic variation. G3: Genes, Genomes, Genetics, 5(4), 477–485. https://doi.org/10.1534/g3.115.016725
- Weller, J. I., Ezra, E., & Gershoni, M. (2021). Broad phenotypic impact of the effects of transgenerational heat stress in dairy cattle: A study of four consecutive generations. Genetics Selection Evolution, 53(1), 69. https://doi.org/10.1186/s12711-021-00666-7
- Zhao, C., Ji, G., Carrillo, J. A., Li, Y., Tian, F., Baldwin, R. L., Zan, L., & Song, J. (2020). The profiling of DNA methylation and its regulation on divergent tenderness in Angus beef cattle. Frontiers in Genetics, 11, 517050. https://doi.org/10.3389/FGENE.2020.00939/BIBTEX