Inbreeding depression and its effect on sperm quality traits in Pietrain pigs
Corresponding Author
Gyembo Tsheten
Department of Livestock, Ministry of Agriculture and Livestock, Thimphu, Bhutan
Correspondence
Gyembo Tsheten, Department of Livestock, Ministry of Agriculture and Livestock, Thimphu, Bhutan.
Email: [email protected]
Search for more papers by this authorBirgit Fuerst-Waltl
University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
Search for more papers by this authorJohann Sölkner
University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
Search for more papers by this authorHenk Bovenhuis
Wageningen University and Research, Animal Breeding and Genomics, Wageningen, The Netherlands
Search for more papers by this authorGábor Mészáros
University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
Search for more papers by this authorCorresponding Author
Gyembo Tsheten
Department of Livestock, Ministry of Agriculture and Livestock, Thimphu, Bhutan
Correspondence
Gyembo Tsheten, Department of Livestock, Ministry of Agriculture and Livestock, Thimphu, Bhutan.
Email: [email protected]
Search for more papers by this authorBirgit Fuerst-Waltl
University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
Search for more papers by this authorJohann Sölkner
University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
Search for more papers by this authorHenk Bovenhuis
Wageningen University and Research, Animal Breeding and Genomics, Wageningen, The Netherlands
Search for more papers by this authorGábor Mészáros
University of Natural Resources and Life Sciences, Division of Livestock Sciences, Vienna, Austria
Search for more papers by this authorAbstract
In most cases, inbreeding is expected to have unfavourable effects on traits in livestock. The consequences of inbreeding depression could be substantial, primarily in reproductive and sperm quality traits, and thus lead to decreased fertility. Therefore, the objectives of this study were (i) to compute inbreeding coefficients using pedigree (FPED) and genomic data based on runs of homozygosity (ROH) in the genome (FROH) of Austrian Pietrain pigs, and (ii) to assess inbreeding depression on four sperm quality traits. In total, 74,734 ejaculate records from 1034 Pietrain boars were used for inbreeding depression analyses. Traits were regressed on inbreeding coefficients using repeatability animal models. Pedigree-based inbreeding coefficients were lower than ROH-based inbreeding values. The correlations between pedigree and ROH-based inbreeding coefficients ranged from 0.186 to 0.357. Pedigree-based inbreeding affected only sperm motility while ROH-based inbreeding affected semen volume, number of spermatozoa, and motility. For example, a 1% increase in pedigree inbreeding considering 10 ancestor generations (FPED10) was significantly (p < 0.05) associated with a 0.231% decrease in sperm motility. Almost all estimated effects of inbreeding on the traits studied were unfavourable. It is advisable to properly manage the level of inbreeding to avoid high inbreeding depression in the future. Further, analysis of effects of inbreeding depression for other traits, including growth and litter size for the Austrian Pietrain population is strongly advised.
CONFLICT OF INTEREST STATEMENT
Johann Sölkner, a co-author of this article is an Editorial Board member of Journal of Animal Breeding and Genetics. To minimize bias, he was excluded from all editorial decision-making related to the acceptance of this article for publication.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
REFERENCES
- Acevedo-Whitehouse, K., Gulland, F., Greig, D., & Amos, W. (2003). Disease susceptibility in California Sea lions. Nature, 422(6927), 35. https://doi.org/10.1038/422035a
- Asa, C., Miller, P., Agnew, M., Rebolledo, J. A. R., Lindsey, S. L., Callahan, M., & Bauman, K. (2007). Relationship of inbreeding with sperm quality and reproductive success in Mexican gray wolves. Animal Conservation, 10(3), 326–331. https://doi.org/10.1111/j.1469-1795.2007.00116.x
- Baumung, R., Farkas, J., Boichard, D., Mészáros, G., Sölkner, J., & Curik, I. (2015). Grain: A computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. Journal of Animal Breeding and Genetics, 132(2), 100–108. https://doi.org/10.1111/jbg.12145
- Bjelland, D. W., Weigel, K. A., Vukasinovic, N., & Nkrumah, J. D. (2013). Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. Journal of Dairy Science, 96(7), 4697–4706. https://doi.org/10.3168/jds.2012-6435
- Boer, M. (2007). Effects of Inbreeding on Semen Quality of Friesian Stallions. 840424082030, 1-19. https://edepot.wur.nl/167274
- Cassell, B. (2009). Performance of inbred dairy cattle.
- Ceballos, F. C., Hazelhurst, S., & Ramsay, M. (2018). Assessing runs of homozygosity: A comparison of SNP Array and whole genome sequence low coverage data. BMC Genomics, 19(1), 1–12. https://doi.org/10.1186/s12864-018-4489-0
- Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), 1–16. https://doi.org/10.1186/s13742-015-0047-8
- Curik, I., Ferenčaković, M., & Sölkner, J. (2014). Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock Science, 166(1), 26–34. https://doi.org/10.1016/j.livsci.2014.05.034
10.1016/j.livsci.2014.05.034 Google Scholar
- Dahlgaard, J., Krebs, R., & Loeschcke, V. (1995). Heat-shock tolerance and inbreeding in drosophila buzzatii. Heredity, 74(2), 157–163. https://doi.org/10.1038/hdy.1995.23
- Do, C. H., Yang, C. B., Choi, J. G., Kim, S. D., Yang, B. S., Park, S. B., Joo, Y. G., & Lee, S. H. (2015). The outcomes of selection in a closed herd on a farm in operation. Asian-Australasian Journal of Animal Sciences, 28(9), 1244–1251. https://doi.org/10.5713/ajas.14.0962
- Doekes, H. P., Bijma, P., & Windig, J. J. (2021). How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. Genes, 12(6), 1–21. https://doi.org/10.3390/genes12060926
- Doekes, H. P., Veerkamp, R. F., Bijma, P., de Jong, G., Hiemstra, S. J., & Windig, J. J. (2019). Inbreeding depression due to recent and ancient inbreeding in Dutch Holstein-Friesian dairy cattle. Genetics Selection Evolution, 51(1), 1–16. https://doi.org/10.1186/s12711-019-0497-z
- Doekes, H. P., Veerkamp, R. F., Bijma, P., Hiemstra, S. J., & Windig, J. J. (2018). Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015. Genetics Selection Evolution, 50(1), 1–16. https://doi.org/10.1186/s12711-018-0385-y
- Dorado, J., Cid, R. M., Molina, A., Hidalgo, M., Ariza, J., Moreno-Millán, M., & Demyda-Peyrás, S. (2015). Effect of inbreeding depression on bull sperm quality and field fertility. Reproduction, Fertility and Development, 29(4), 712–720. https://doi.org/10.1071/RD15324
- Ferenčaković, M., Hamzić, E., Gredler, B., Solberg, T. R., Klemetsdal, G., Curik, I., & Sölkner, J. (2012). Estimates of autozygosity derived from runs of homozygosity: Empirical evidence from selected cattle populations. Journal of Animal Breeding and Genetics, 130(4), 286–293. https://doi.org/10.1111/jbg.12012
- Ferenčaković, M., Sölkner, J., Kapš, M., & Curik, I. (2017). Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. Journal of Dairy Science, 100(6), 4721–4730. https://doi.org/10.3168/jds.2016-12164
- Fisher, R. A. (1954). A fuller theory of “junctions” in inbreeding. Heredity, 8(2), 187–197. https://doi.org/10.1038/hdy.1954.17
- Fitzpatrick, J. L., & Evans, J. P. (2009). Reduced heterozygosity impairs sperm quality in endangered mammals. Biology Letters, 5(3), 320–323. https://doi.org/10.1098/rsbl.2008.0734
- Forutan, M., Ansari Mahyari, S., Baes, C., Melzer, N., Schenkel, F. S., & Sargolzaei, M. (2018). Inbreeding and runs of homozygosity before and after genomic selection in north American Holstein cattle. BMC Genomics, 19(1), 1–12. https://doi.org/10.1186/s12864-018-4453-z
- Frangež, R., Gider, T., & Kosec, M. (2005). Frequency of boar ejaculate collection and its influence on semen quality, pregnancy rate and litter size. Acta Veterinaria Brno, 74(2), 265–273. https://doi.org/10.2754/avb200574020265
- Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W., & Sabuncu, M. R. (2017). Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 114(21), 5521–5526. https://doi.org/10.1073/pnas.1700765114
- Gilmour, A. R., Gogel, B. J., & Welham, S. J. (2015). ASReml User Guide Structural Specification. www.vsni.co.uk
- Gulisija, D., & Crow, J. F. (2007). Inferring purging from pedigree data. Evolution, 61(5), 1043–1051. https://doi.org/10.1111/j.1558-5646.2007.00088.x
- Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding inbreeding depression, purging, and genetic rescue. Trends in Ecology and Evolution, 31(12), 940–952. https://doi.org/10.1016/j.tree.2016.09.005
- Hinkson, K. M., & Poo, S. (2020). Inbreeding depression in sperm quality in a critically endangered amphibian. Zoo Biology, 39(3), 197–204. https://doi.org/10.1002/zoo.21538
- Howard, J. T., Pryce, J. E., Baes, C., & Maltecca, C. (2017). Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. Journal of Dairy Science, 100(8), 6009–6024. https://doi.org/10.3168/jds.2017-12787
- Howrigan, D. P., Simonson, M. A., & Keller, M. C. (2011). Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms. BMC Genomics, 12, 1–15. https://doi.org/10.1186/1471-2164-12-460
- Kardos, M., Luikart, G., & Allendorf, F. W. (2015). Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity, 115(1), 63–72. https://doi.org/10.1038/hdy.2015.17
- Keller, M. C., Visscher, P. M., & Goddard, M. E. (2011). Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics, 189(1), 237–249. https://doi.org/10.1534/genetics.111.130922
- Kim, Y., Lee, Y., Lee, S., Kim, N. H., Lim, J., Kim, Y. J., Oh, J. H., Min, H., Lee, M., Seo, H. J., Lee, S. H., Sung, J., Cho, N. H., Kim, B. J., Han, B. G., Elston, R. C., Won, S., & Lee, J. (2015). On the estimation of heritability with family-based and population-based samples. BioMed Research International, 2015, 1–9. https://doi.org/10.1155/2015/671349
- Knap, P. W., & Doeschl-Wilson, A. (2020). Why breed disease-resilient livestock, and how? Genetics Selection Evolution, 52(1), 1–18. https://doi.org/10.1186/s12711-020-00580-4
- Köck, A., Fürst-Waltl, B., & Baumung, R. (2009). Effects of inbreeding on number of piglets born total, born alive and weaned in Austrian large white and landrace pigs. Archives Animal Breeding, 52(1), 51–64. https://doi.org/10.5194/aab-52-51-2009
- Leroy, G. (2014). Inbreeding depression in livestock species: Review and meta-analysis. Animal Genetics, 45(5), 618–628. https://doi.org/10.1111/age.12178
- Li, X., Jiang, B., Wang, X., Liu, X., Zhang, Q., & Chen, Y. (2019). Estimation of genetic parameters and season effects for semen traits in three pig breeds of South China. Journal of Animal Breeding and Genetics, 136(3), 183–189. https://doi.org/10.1111/jbg.12393
- Losdat, S., Germain, R. R., Nietlisbach, P., Arcese, P., & Reid, J. M. (2018). No evidence of inbreeding depression in sperm performance traits in wild song sparrows. Ecology and Evolution, 8(3), 1842–1852. https://doi.org/10.1002/ece3.3721
- Marques, D. B. D., Lopes, M. S., Broekhuijse, M. L. W. J., Guimarães, S. E. F., Kno, E. F., Bastiaansen, J. W. M., Silva, F. F., & Lopes, P. S. (2017). Genetic parameters for semen quality and quantity traits in five pig lines. Journal of Animal Science, 95(10), 4251–4259. https://doi.org/10.2527/jas2017.1683
- Martikainen, K., Sironen, A., & Uimari, P. (2018). Estimation of intrachromosomal inbreeding depression on female fertility using runs of homozygosity in Finnish Ayrshire cattle. Journal of Dairy Science, 101(12), 11097–11107. https://doi.org/10.3168/jds.2018-14805
- Mastrangelo, S., Tolone, M., Di Gerlando, R., Fontanesi, L., Sardina, M. T., & Portolano, B. (2016). Genomic inbreeding estimation in small populations: Evaluation of runs of homozygosity in three local dairy cattle breeds. Animal, 10(5), 746–754. https://doi.org/10.1017/S1751731115002943
- Maximini, L., Fuerst-Waltl, B., Gredler, B., & Baumung, R. (2011). Inbreeding depression on semen quality in Austrian dual-purpose Simmental bulls. Reproduction in Domestic Animals, 46(1), 102–104. https://doi.org/10.1111/j.1439-0531.2010.01645.x
- McQuillan, R., Leutenegger, A. L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., Smolej-Narancic, N., Janicijevic, B., Polasek, O., Tenesa, A., MacLeod, A. K., Farrington, S. M., Rudan, P., Hayward, C., Vitart, V., Rudan, I., Wild, S. H., Dunlop, M. G., Wright, A. F., … Wilson, J. F. (2008). Runs of homozygosity in European populations. American Journal of Human Genetics, 83(3), 359–372. https://doi.org/10.1016/j.ajhg.2008.08.007
- Meuwissen, T. H. E., Sonesson, A. K., Gebregiwergis, G., & Woolliams, J. A. (2020). Management of Genetic Diversity in the era of genomics. Frontiers in Genetics, 11, 1–16. https://doi.org/10.3389/fgene.2020.00880
- Meyermans, R., Gorssen, W., Buys, N., & Janssens, S. (2020). How to study runs of homozygosity using plink? A guide for analyzing medium density snp data in livestock and pet species. BMC Genomics, 21(1), 1–14. https://doi.org/10.1186/s12864-020-6463-x
- Oliehoek, P. A., & Bijma, P. (2009). Effects of pedigree errors on the efficiency of conservation decisions. Genetics Selection Evolution, 41(9), 1–11. https://doi.org/10.1186/1297-9686-41-9
- Schiavo, G., Bovo, S., Bertolini, F., Tinarelli, S., Dall'Olio, S., Nanni Costa, L., Gallo, M., & Fontanesi, L. (2020). Comparative evaluation of genomic inbreeding parameters in seven commercial and autochthonous pig breeds. Animal, 14(5), 910–920. https://doi.org/10.1017/S175173111900332X
- Shi, L., Wang, L., Liu, J., Deng, T., Yan, H., Zhang, L., Liu, X., Gao, H., Hou, X., Wang, L., & Zhao, F. (2020). Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a large white pig population. Journal of Animal Science and Biotechnology, 11(1), 1–10. https://doi.org/10.1186/s40104-020-00447-0
- Shikano, T., Chiyokubo, T., & Taniguchi, N. (2001). Effect of inbreeding on salinity tolerance in the guppy (Poecilia reticulata). Aquaculture, 202(1–2), 45–55. https://doi.org/10.1016/S0044-8486(01)00568-3
- Silió, L., Rodríguez, M. C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., & Fernández, A. I. (2013). Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics. Journal of Animal Breeding and Genetics, 130(5), 349–360. https://doi.org/10.1111/jbg.12031
- Strand, I. (2014). Program for pedigree analysis.
- Szmatoła, T., Gurgul, A., Jasielczuk, I., Ząbek, T., Ropka-Molik, K., Litwińczuk, Z., & Bugno-Poniewierska, M. (2019). A comprehensive analysis of runs of homozygosity of eleven cattle breeds representing different production types. Animals, 9(12), 1–24. https://doi.org/10.3390/ani9121024
- Szmatoła, T., Jasielczuk, I., Semik-Gurgul, E., Szyndler-Nędza, M., Blicharski, T., Szulc, K., Skrzypczak, E., & Gurgul, A. (2020). Detection of runs of homozygosity in conserved and commercial pig breeds in Poland. Journal of Animal Breeding and Genetics, 137(6), 571–580. https://doi.org/10.1111/jbg.12482
- van Eldik, P., Van Der Waaij, E. H., Ducro, B., Kooper, A. W., Stout, T. A. E., & Colenbrander, B. (2006). Possible negative effects of inbreeding on semen quality in Shetland pony stallions. Theriogenology, 65(6), 1159–1170. https://doi.org/10.1016/j.theriogenology.2005.08.001
- Vostry, L., Milerski, M., Schmidova, J., & Vostra-Vydrova, H. (2018). Genetic diversity and effect of inbreeding on litter size of the Romanov sheep. Small Ruminant Research, 168(September), 25–31. https://doi.org/10.1016/j.smallrumres.2018.09.004
10.1016/j.smallrumres.2018.09.004 Google Scholar
- Wakchaure, R., & Ganguly, S. (2015). Inbreeding, its effects and applications in animal genetics and breeding: A review. International Journal of Emerging Technology and Advanced Engineering, 5(9), 73–76.
- Windig, J. J. (2021). Reducing inbreeding rates with a breeding circle: Theory and practice in Veluws Heideschaap.
- Windig, J. J., Verweij, M. J. W., & Oldenbroek, J. K. (2019). Reducing inbreeding rates with a breeding circle: Theory and practice in Veluws Heideschaap. Journal of Animal Breeding and Genetics, 136(1), 51–62. https://doi.org/10.1111/jbg.12371
- Xu, Z., Sun, H., Zhang, Z., Zhao, Q., Olasege, B. S., Li, Q., Yue, Y., Ma, P., Zhang, X., Wang, Q., & Pan, Y. (2019). Assessment of autozygosity derived from runs of homozygosity in Jinhua pigs disclosed by sequencing data. Frontiers in Genetics, 10, 1–11. https://doi.org/10.3389/fgene.2019.00274
- Yadav, A., Jain, A., Sahu, J., Dubey, A., Gadpayle, R., Barwa, D. K., & Kumar, V. (2019). A review on the concept of inbreeding and its impact on livestock. International Journal of Fauna and Biological Studies, 6(5), 23–30.
- Zhang, Q., Calus, M. P. L., Guldbrandtsen, B., Lund, M. S., & Sahana, G. (2015). Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, 16(1), 1–11. https://doi.org/10.1186/s12863-015-0227-7