Simulation of laboratory vortex flow by axisymmetric similarity solutions
WILLIAM H. RAYMOND
Department of Geophysical Sciences The University of Chicago, Chicago, Illinois 60637, U.S.A.
Search for more papers by this authorH. L. KUO
Department of Geophysical Sciences The University of Chicago, Chicago, Illinois 60637, U.S.A.
Search for more papers by this authorWILLIAM H. RAYMOND
Department of Geophysical Sciences The University of Chicago, Chicago, Illinois 60637, U.S.A.
Search for more papers by this authorH. L. KUO
Department of Geophysical Sciences The University of Chicago, Chicago, Illinois 60637, U.S.A.
Search for more papers by this authorAbstract
A similarity approach is utilized to investigate a simple axisymmetric steady-state model of the convergence region of a laboratory vortex. The resulting simplified set of equations are solved for a range of swirl angles by varying the tangential or radial velocity component at the outer rim. By increasing the swirl angle the flow is found to go from a one cell to a two cell configuration, i.e., the vertical velocity changes from everywhere positive to negative in the vicinity of the axis. Correspondingly the vertical vorticity maximum moves from the axis outward toward the radius of maximum tangential velocity, making the flow barotropically unstable with respect to unsymmetrical perturbations.
REFERENCES
- Agee, E. M., Church, C. R., Morris, C. and Snow, J. T. 1975. Some synoptic aspects and dynamic features of vortices associated with the tornado outbreak of 3 April 1974. Mon. Wea. Rev. 103, 318–333.
- Church, C. R., Snow, J. T. and Agee, E. M. 1977. Tornado vortex simulation at Purdue University. Bull. Amer. Meteorol. Soc. 58, 900–908.
- Church, C. R. and Snow, J. T. 1979. The dynamics of natural tornadoes as inferred from laboratory simulations. J. Rech. Atmos. 13, 111–133.
- Church, C. R., Snow, J. T., Baker, G. L. and Agee E. M. 1979. Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation. J. Atmos. Sci. 36, 1755–1776.
- Conte, S. D. and De Boor, C. 1972. Elementary numerical analysis: an algorithmic approach. New York: McGraw-Hill, 396 pp.
- Davies-Jones, R. P. 1973. The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci. 30, 1427–1430.
- Davies-Jones, R. P. and Kessler, E. 1974. Tornadoes, weather and climate modification (ed. W. N. Hess). Wiley, 842 pp. (See chap. 16.).
- Forbes, G. S. 1978. Three scales of motion associated with tornadoes. Ph.D. Thesis, Univ. of Chicago, Chicago, Illinois. 359 pp. [Available from National Technical Information Service, Springfield, Virginia 22161.].
- Fujita, T. T. 1971. Proposed mechanism of suction spots accompanied by tornadoes. Preprint, Seventh Conf. Severe Local Storms, Boston: Amer. Meteorol. Soc. pp. 208–213.
- Fujita, T. T. 1972. Proposed mechanism of suction spots accompanied by tornadoes. SMRP Research Paper No. 102, The University of Chicago, 14 pp.
- Hall, M. G. 1972. Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195–213.
- Harlow, F. H. and Stein, L. R. 1974. Structural analysis of tornado-like vortices. J. Atmos. Sci. 31, 2081–2098.
- Jischke, M. C. and Parang, 1974. Properties of simulated tornado-like vortices. J. Atmos. Sci. 31, 506–512.
- Kreiss, H. and Oliger, J. 1973. Methods for the approximate solution of time dependent problems. WMO 11 CSN Joint Organizing Committee, GARP Publication Series No. 10, 107 pp.
- Kuo, H. L. 1966. On the dynamics of convective atmospheric vortices. J. Atmos. Sci. 23, 25–42.
- Kuo, H. L. 1967. Note on the similarity solutions of the vortex equations in an unstably stratified atmosphere. J. Atmos. Sci. 24, 95–97.
- Kuo, H. L. 1969. Axisymmetric flows in the boundary layer of a maintained vortex. University of Chicago, Planetary Circ. Proj., Rept. No. 15, 54 pp.
- Leslie, F. W. 1977. Surface roughness effect on suction vortex formation: a laboratory simulation. J. Atmos. Sci. 34, 1022–1027.
- Lewellen, W. S. 1962. A solution for three-dimensional vortex flows with strong circulation. J. Fluid Mech. 14, 420–432.
- Rayleigh, Lord 1916: On the dynamics of revolving fluids. Proc. Roy. Soc. London, A93, 148–154.
- Rotunno, R. 1977. Numerical simulation of a laboratory vortex. J. Atmos. Sci. 34, 1942–1956.
- Rotunno, R. 1979. A study of tornado-like vortex dynamics. J. Atmos. Sci. 36. 140–155.
- Snow, J. T. 1978. On inertial instability as related to the multiple-vortex phenomenon. J. Atmos. Sci. 35, 1660–1677.
- Snow, J. T. Church, C. R. and Barnhart, B. J. 1980. An investigation of the surface pressure fields beneath simulated tornado cyclones. J. Atmos. Sci. 37, 1013–1026.
- Staley, D. O. and Gall, R. L. 1979. Barotropic instability in a tornado vortex. J. Atmos. Sci. 36, 973–981.
- Synge, J. L. 1938. On the stability of a viscous fluid between rotating coaxial cylinders, Proc. Roy. Soc. London Ser. A, 167, 250–256.
- Turner, J. S. and Lilly, D. K. 1963. The carbonated water tornado vortex. J. Atmos. Sci. 20, 468–471.
- Ying, S. J. and Chang, C. C. 1970. Exploratory model study of tornado-like vortex dynamics. J. Atmos. Sci. 27, 3–14.
- Ward, N. B. 1970. The exploration of certain features of tornado dynamics using a laboratory model. NOAA Tech. Mem. ERLTM-NSSL 52, 22 pp.
- Ward, N. B. 1972. The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci. 29, 1194–1204.