Volume 83, Issue 6 pp. 1541-1542
Free Access

FTIR Spectroscopic and Theoretical Study of the Photochemistry of Matrix-isolated Coumarin

First published: 14 November 2007
Citations: 6

Nihal Kuş, Susana Breda, Igor Reva, Erol Tasal, Cemil Ogretir and Rui Fausto

DOI: 10.1111/j.1751-1097.2007.00233.x

In the most recent issue of Photochemistry and Photobiology, 2007, 83(5), 1237–1253, an error in Table 2 was published.

Table 2. Frequencies (cm−1) and intensities (km mol−1) of monomeric coumarin theoretically calculated at the B3LYP/6-311++G(d,p) and MP2/6-31G(d,p) levels compared to the observed infrared spectrum of coumarin isolated in an argon matrix at 10 K*.
Approximate description† Sym. Calculated DFT(B3LYP)/ 6-311++G(d,p) Calculated MP2/6-31G(d,p) Observed spectrum Ar (10 K)
Freq.‡ Int. Freq.§ Int. Freq. Int.||
ν(C3–H) A′ 3099 0.3 3100 0.5
ν(C7–H) A′ 3088 3.2 3087 4.1 3096 1.0
ν(C9–H) A′ 3079 11.0 3079 10.6 3085,3079 1.5
ν(C8–H) A′ 3065 7.0 3064 5.5 3059 1.0
ν(C10–H) A′ 3055 5.2 3050 0.9 3053 1.1
ν(C4–H) A′ 3051 4.1 3052 11.0 3043 0.7
ν(C=O) A′ 1772 718.0 1757 422.3 1776,1774,1772,1767,1762, 1759,1752,1748,1747 456.6
ν(C3=C4) A′ 1633 65.9 1628 24.8 1635,1632,1631,1630 45.0
ν(C10–C9) A′ 1616 60.7 1608 25.7 1617,1613,1612,1610 54.1
ν(C8–C7) A′ 1568 39.3 1566 6.3 1572,1571 12.7
δ(C–H) ph A′ 1489 5.2 1484 8.4 1492 3.2
ν(C7–C6) A′ 1453 23.4 1445 31.6 1459,1458,1455 25.8
δ(C–H) py A′ 1400 10.1 1425 11.6 1399 9.8
ν(C5–C6)/δ(C–H) ph A′ 1336 2.7 1390 12.8 1329,1327 1.9
δ(C–H) ph/ν(C5–C6) A′ 1273 20.7 1258 27.3 1278,1276,1275 13.2
ν(C6–O) A′ 1255 28.6 1242 14.0 1263,1262,1260,1259 17.6
ν(C4–C5) A′ 1225 13.1 1224 2.2 1233,1232,1228,1226,1225 13.8
δ(C–H) py/ν(C2–C3) A′ 1169 25.6 1174 99.5 1202,1197,11961194,1181,1178 69.2
δ(C–H) ph A′ 1156 0.9 1151 0.9 1156,1153 1.2
δ(C–H) ph A′ 1118 20.5 1111 47.5 1134,1132,1129,1128,1123,1119,1118 32.6
ν(C2–C3)/δ(C–H) py A′ 1075 99.8 1088 49.2 1106,1102,1098,1097 56.1
ν(C9–C8) A′ 1030 2.2 1021 1.3 1031,1030 1.0
γ(C–H) py A′′ 983 0.5 964 0.5 984,982 0.2
γ(C–H) ph A′′ 969 0.2 917 0.3
γ(C−H) ph A′′ 948 3.2 903 0.5 945,944,942,940 3.4
ν(O−C2)/δ ring ph A′ 922 28.8 911 23.5 929,927,926 19.8
δ ring ph/ν(O–C2) A′ 875 43.3 949 41.5 888,886 21.0
γ(C–H) ph A′′ 863 3.1 843 0.6 866,865,864 2.3
γ(C–H) py A′′ 830 59.1 827 61.0 832,829,828,827 52.2
ν(C10–C5) A′ 761 2.5 785 2.6 765,763,762,761,759,753 56.2
γ(C–H) ph A′′ 761 46.8 763 46.0
τ ring py A′′ 740 15.9
δ ring ph A′ 731 2.6 754 1.7 726,725 1.1
γ(C=O) A′′ 678 0.5 669 4.2 680 0.2
δ ring py A′ 614 8.3 626 9.7 610 7.3
τ ring py A′′ 538 0.2 503 0.0
δ ring py A′ 530 6.7 542 3.9 527,526 2.0
δ(C=O) A′ 489 5.4 497 3.9 490,486(?) 0.6
τ Butterfly A′′ 454 5.2 435 1.3 459,452 4.6
δ ring ph A′ 445 1.5 456 0.8 446 0.3
τ ring py A′′ 355 0.4 Not investigated
τ ring ph A′′ 369 0.1 327 0.1
δ ring py A′ 304 0.8 308 1.0
τ ring py A′′ 253 0.5 243 0.3
τ ring ph A′′ 154 4.6 154 4.5
τ ring ph A′′ 93 1.4 93 1.2
  • *See Table S1 for definition of symmetry coordinates and Tables S2 and S3 for PEDs calculated using the DFT and MP2 force constants and geometries, respectively. †Approximate description is known to be an oversimplification of the vibrations description, where their description in terms of a single, most significant symmetry coordinate was attempted. The detailed description is given in the PED form (Tables S2 and S3). ν, bond stretching; δ, bending; γ, rocking; τ, torsion; ph, phenyl ring; py, pyrone ring. Wherever two approximate descriptions are given, separated by a slash (/) symbol, the left one corresponds to the approximate description extracted from the PEDs calculated at the DFT(B3LYP)/6-311++G(d,p) level and the right one to that obtained based on the MP2/6-31G(d,p) calculations. ‡Theoretical positions of absorption bands were scaled by a factor 0.964 in the 4000–2500 cm−1 region; 0.982 in the 2500–1000 cm−1 region and 0.989 in the region below 1000 cm−1. §Theoretical positions of absorption bands were scaled by a factor of 0.938 in the 4000–2500 cm−1 region; 0.956 in the 2500–1000 cm−1 region and 1.014 in the region below 1000 cm−1. ||Observed intensities (Intexp) correspond to band integral absorbances (A) normalized by the theoretical intensities (Intcalc) at MP2/6-31G(d,p) level, according to the formula Intexp(i)= A(i)ΣIntcalcA, where the sums extend to all theoretical bands which have an experimentally observed counterpart. ¶In the low frequency region the torsional vibrations of the pyrone ring were predicted in a substantially different way by the DFT(B3LYP)/6-311++G(d,p) and MP2/6-31G(d,p) methods.

The corrected Table 2 is shown:

    The full text of this article hosted at iucr.org is unavailable due to technical difficulties.