DETERMINING THE OPTIMAL DOSE OF PHOTOFRIN® IN MINISWINE ATHEROSCLEROTIC PLAQUE
Corresponding Author
York N. Hsiang
Departments of Surgery, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
*To whom correspondence should be addressedSearch for more papers by this authorMiguel Fragoso
Departments of Surgery, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
Search for more papers by this authorVincent Tsang
Departments of Surgery, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
Search for more papers by this authorWilliam E. Schreiber
Departments of Pathology, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
Search for more papers by this authorCorresponding Author
York N. Hsiang
Departments of Surgery, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
*To whom correspondence should be addressedSearch for more papers by this authorMiguel Fragoso
Departments of Surgery, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
Search for more papers by this authorVincent Tsang
Departments of Surgery, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
Search for more papers by this authorWilliam E. Schreiber
Departments of Pathology, University of British Columbia, Vancouver, B.C., Canada V6T 2B5
Search for more papers by this authorAbstract
The purpose of this study was to determine the lowest dose of Photofrin (P) that would produce a 3:1 or greater ratio between atherosclerotic (AS) and control arterial walls. Aortoiliac AS was created in 24 Yucatan miniswine by a combination of balloon endothelial injury and 2% cholesterol and 15% lard diet for 7 weeks. Arteriography was then performed to demonstrate AS lesions. Following this, swine were given intravenously P in one of the following single dosages: 2.5, 1.0 or 0.5 mg/kg. Twenty-four hours later, swine were sacrificed and aortoiliac and control carotid artery segments removed and photographed with ultraviolet light to differentiate fluorescent from nonfluorescent areas. Arterial specimens were submitted for histologic analysis and chemical extraction for determination of fluorescence using a spectrofluorometer. Tissue concentration (ng/g tissue) of P from AS vessels were: Group I, 130.4 ± 82.7; Group II, 10.0 ± 1.2; and Group HI, 9.1 ± 0.6, respectively (P < 0.05). Ratios of P concentration in AS:control vessels were: Group I, 8.1 ± 13.7; Group II, 1.1 ± 0.2; and Group III, 0.9 ± 0.1, respectively (P < 0.05).
These results demonstrated that a P dose of 2.5 mg/kg provided at least a 3:1 ratio between AS:control artery wall.
References
- 1 Dougherty, T. J. (1987) Photosensitizers: therapy and detection of malignant tumors. Photochem. Photobiol. 45, 879–889.
- 2 Manyak, M. J., A. Russo, P. D. Smith and E. Glatstein (1988) Photodynamic therapy. J. Clin. Oncol. 6, 380–391.
- 3 Johnson, M. D., J. V. Fox, E. M. Hammond and G. M. Vincent (1987) In-vitro removal of photosensitized rabbit atherosclerotic plaque by dye laser irradiation. Laser Res. Med. 60, 13–17.
- 4 Neave, V., S. Giannotta, S. Hyman and J. Schneider (1988) Hematoporphyrin uptake in atherosclerotic plaques: therapeutic potentials. Neurosurgery 23, 307–312.
- 5 Vincent, G. M., R. W. Mackie, E. Orme, J. Fox and M. Johnson (1990) In-vivo photosensitizer-enhanced laser angioplasty in atherosclerotic Yucatan miniswine. J. Clin. Laser Med. Surg. 9, 59–61.
- 6 Spears, J. R. (1989) Photosensitization. In Cardiovascular Laser Therapy (Edited by J. Isner and R. Clarke), pp. 107–120. Raven Press Ltd., New York .
- 7 Fowlks, W. L. (1959) The mechanism of the photodynamic effect. J. Invest. Dermatol. 32, 233–247.
- 8 Thomsen, K., H. Schmidt and A. Fisher (1979) Beta-carotene in erythropoietic protoporphyria: 5 years experience. Derma-tologica 159, 82–86.
- 9 Spears, J. R., J. Serur, D. Shropshire and S. Paulin (1983) Fluorescence of experimental atheromatous plaques with he-matoporphrin derivative. J. Clin. Invest. 71, 395–397.
- 10 Ho, Y.-K., R. K. Pandey, J. R. Missert, D. A. Bellnier and T. J. Dougherty (1988) Carbon-14 labeling and biological activity of the tumor-localizing derivative of hematoporphyrin. Photochem. Photobiol. 48, 445–449.
- 11 Harris, D. M. and J. Werkhaven (1987) Endogenous porphyrin fluorescence in tumors. Lasers Surg. Med. 7, 467–472.
- 12 Mang, T. S., T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Somer and J. Moan (1987) Photobleaching of porphyrins used in photodynamic therapy and implications for therapy. Photochem. Photobiol. 45, 501–506.
- 13 Profio, A. E. and D. R. Doiron (1987) Dose measurements in photodynamic therapy of cancer. Lasers Surg. Med. 7, 1–5.
- 14 Litvack, F., W. S. Grundfest, J. S. Forrester, M. C. Fishbein, H. J. C. Swan, E. Corday, D. M. Rider, I. S. McDermid, T. J. Pacala and J. B. Laudenslager (1985) Effects of hematoporphyrin derivative and photodynamic therapy on atherosclerotic rabbits. Am. J. Cardiol. 56, 667–671.
- 15 Vincent, G. M., J. Fox, G. Charlton, J. S. Hill, R. McClane and J. D. Spikes (1992) Presence of blood significantly decreases transmission of 630 nm laser light. Lasers Surg. Med. 11, 399–403.
- 16 Vever-Bizet, C., Y. L'Epine, E. Delettre, M. Dellinger, R. Peron-neau, J. C. Gaux and D. Brault (1989) Photofrin II uptake by atheroma in atherosclerotic rabbits. Fluorescence and high performance liquid chromatographic analysis on post-mortem aorta. Photochem. Photobiol. 49, 731–737.
- 17 Fingar, V. H. and B. W. Henderson (1987) Drug and light dose dependence of photodynamic therapy: a study of tumor and normal tissue response. Photochem. Photobiol. 46, 837–841.
- 18 Robertson, A. L. and P. A. Khairallah (1973) Arterial endothelial permeability and vascular disease: the trap door effect. Exp. Mol. Pathol. 18, 241–249.
- 19 Ross, R. (1986) The pathogenesis of atherosclerosis-an update. N. Engl. J. Med. 314, 488–500.
- 20 Vincent, G. M., M. E. Hammond, J. B. Fox, M. D. Johnson and R. C. Straight (1987) Deposition of silver-hematopor-phyrin in atherosclerotic plaque is homogeneous, intercellular, and confined to plaque. J. Am. Coll. Cardiol. 9, 178A.
- 21 Dougherty, T. J., W. R. Potter and K. R. Weishaupt (1984) The structure of the active component of hematoporphyrin derivative. In Porphyrins in Tumor Phototherapy (Edited by A. Andreoni and R. Cubeddu), pp. 23–36. Plenum Press, New York .
- 22 Dougherty, T. J., G. Lawrence, J. E. Kaufman, D. G. Boyle, K. R. Weishaupt and A. Goidfarb (1979) Photoradiation therapy for the treatment of recurrent breast carcinoma. J. Natl. Cancer Inst. 62, 231–235.
- 23 Mackie, R. W., A. Kralios, M. Johnson, J. Fox, D. Decker and G. M. Vincent (1988a) In vivo 632 nm laser irradiation of dihematoporphyrin ether sensitized canine coronary arteries: temperature changes and histologic effects with and without coronary blood flow. Lasers Surg. Med. 8, 155.
- 24 Mackie, R. W., E. C. Orme, E. H. Hammond, C.-Z. Cui, J. Fox, M. D. Johnson and G. M. Vincent (1988b) In vivo canine coronary artery laser irradiation after dihematoporphyrin ether administration, electrographic, angiographic and histologic response. Lasers Surg. Med. 8, 153.
- 25 Kessel, D. and E. Sykes (1984) Porphyrin accumulation by atheromatous plaques of the aorta. Photochem. Photobiol. 40, 59–61.
- 26 Spokojny, A.M., J.R. Serur, J. Skillman and J.R. Spears (1986) Uptake of hematoporphyrin derivative by atheromatous plaques: studies in human in vitro and rabbit in vivo. J. Am. Coll. Cardiol. 8, 1387–1392.
- 27 Okunaka, T., H. Kato, K. Aizawa, T. Ohtani, H. Kawabe, T. Asahara, H. Nakajima, I. Yamasawa, C. Ibukiyama, S. O'Hata and Y. Hayata (1987) Hematoporphyrin derivative uptake by atheroma in atherosclerotic rabbits: the spectra of fluorescence from hematoporphyrin derivative demonstrated by an excimer dye laser. Photochem. Photobiol. 46, 769–775.
- 28 Scannapieco, G., A. Pagnan, P. Pauletto, A. Mattiello, S. Bif-fanti, G. Jori and C. Dal Palu (1988) Hematoporphyrin binding to cultured aortic smooth muscle cells from spontaneously atherosclerotic turkey. Atherosclerosis 72, 241–244.
- 29 Pernes, J. M., D. Brault, C. Y. Angel, P. Bruneval, J. Ehrhart, S. Grill, C. Bescond, R. Bensasson, J. P. Camilleri, P. Peronneau and J. C. Gaux (1988) Comparative study of the selective uptake of hematoporphyrin derivative components into experimental atherosclerotic plaques: potential for laser angioplasty. Interv. Radiol. 3, 3–8.
- 30 Palac, R. T., L. L. Gray, F. E. Turner, P. H. Brown, M. R. Malinow and H. Demots (1989) Detection of experimental atherosclerosis with indium-111 radiolabeled hematoporphyrin derivative. Nucl. Med. Commun. 10, 841–850.
- 31 Pollock, M. E., J. Eugene, M. Hammer-Wilson and M. W. Berns (1987) Photosensitization of experimental atheromas by porphyrins. J. Am. Coll. Cardiol. 9, 639–646.
- 32 Nakajima, H., T. Kato, T. Asahara, M. Usui, Y. Ooyke, H. Rakue, H. Shiraishi, Y. Naito, I. Yamasawa and C. Ibukiyama (1990) The basic study on laser angioplasty by photodynamic therapy using hematoporphyrin derivatives. Circulation 82(Suppl III), 494.
- 33 Tang, G., S. Hyman, J. Schneider, L. Megerdichian and S. L. Giannotta (1991) Photodynamic therapy applied to atherosclerotic lesions. Clin. Res. 39, 13A.