FLUORESCENCE AND CIRCULAR DICHROISM STUDIES ON THE PHYCOERYTHROCYANINS FROM THE CYANOBACTERIUM
Westiellopsis prolifica
P. S. Maruthi Sai
School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
Botanisches Institut der Universität, Menzinger Straβe 67, 8000 München 19, Germany
*Department of Biochemistry, The Weizmann Institute of Science, Rehovot, Israel.
Search for more papers by this authorS. Siebzehnrübl
Botanisches Institut der Universität, Menzinger Straβe 67, 8000 München 19, Germany
Search for more papers by this authorS. Mahajan
School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
Search for more papers by this authorCorresponding Author
H. SCHEER
Botanisches Institut der Universität, Menzinger Straβe 67, 8000 München 19, Germany
†To whom correspondence should be addressed.Search for more papers by this authorP. S. Maruthi Sai
School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
Botanisches Institut der Universität, Menzinger Straβe 67, 8000 München 19, Germany
*Department of Biochemistry, The Weizmann Institute of Science, Rehovot, Israel.
Search for more papers by this authorS. Siebzehnrübl
Botanisches Institut der Universität, Menzinger Straβe 67, 8000 München 19, Germany
Search for more papers by this authorS. Mahajan
School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
Search for more papers by this authorCorresponding Author
H. SCHEER
Botanisches Institut der Universität, Menzinger Straβe 67, 8000 München 19, Germany
†To whom correspondence should be addressed.Search for more papers by this authorAbstract
Two phycoerythrocyanin (PEC) fractions have been obtained from the phycobilisomes of the cyanobac-terium Westiellopsis prolifica ARM 365. They have been characterized by absorption, fluorescence and circular dichroism spectroscopy. One of them is spectroscopically similar to a PEC trimer known from other organisms. Whereas efficient energy transfer from its violin (α-84) to the cyanin (β-84, 155) chromophores is efficient in the trimer (αβ it is impeded after dissociation to the monomer (α,β). A second fraction of PEC which we earlier termed PEC(X) (Maruthi Sai et al., Photochem. Photobiol.55,119–124, 1992), exhibited the spectral properties similar to that of the α-subunit of PEC from Mastigocladus laminosus. With this highly photoactive fraction, the circular dichroism spectra of the violobilin chromophore in both photoreversible states were obtained.
References
- 1 MacColl, R. and D. Guard-Friar(1987) Phycobilipwteins. CRC Press, Boca Raton , FL .
- 2 Scheer, H.(1982) Light reaction path of photosynthesis. In Phycobilipwteins: Molecular Aspects of Photosynthetic Antenna Systems (Edited by F. K. Fong), pp. 7–45. Springer, Berlin .
- 3 Zuber, H.(1986) Primary structure and function of the light harvesting polypeptides from cyanobacteria, red algae and purple photosynthetic bacteria. In Encyclopedia of Plant Physiology, Vol. 19. Photosynthesis III (Edited by L. A. Staehelin and C. J. Arntzen), pp. 238–251. Springer, Berlin .
- 4 Glazer, A. N.(1984) Phycobilisome. A macromolecular complex optimised for light energy transfer. Biochim. Biophys. Acta 768, 29–51.
- 5 Gantt, E.(1986) Phycobilisomes. In Encyclopedia of Plant Physiology, Photosynthesis, Vol. 19. Photosynthesis III (Edited by L. A. Staehelin and C. J. Arntzen), pp. 260–268. Springer, Berlin .
- 6 Scheer, H.(1986) Excitation transfer in phycobiliproteins. In Encyclopedia of Plant Physiology, Vol. 19. Photosynthesis III (Edited by L. A. Staehelin and C. J. Arntzen), pp. 327–337. Springer, Berlin .
- 7 Glazer, A. N.(1989) Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264, 1–4.
- 8 Bryant, D. A., A. N. Glazer and F. A. Eiserling(1976) Characterisation and structural properties of major biliproteins of Anabaena sp. Arch. Microbiol. 110, 61–75.
- 9 Bryant, D. A.(1982) Phycoerythrocyanin and phycoerythrin properties and occurrence in cyanobacteria. J. Gen. Microbiol. 128, 835–844.
- 10 Kufer, W., W. Rüdiger and M. Eberlein(1990) Organisation, molecular evolution and regulation of the phycoerythrocyanin gene cluster. Abstract of 1st European Workshop on the Molecular Biology of Cyanobacteria. Dourdan, France .
- 11 Dürring, M., R. Huber, W. Bode, R. Rümbeli and H. Zuber(1990) Refined three dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J. Mol. Biol. 211, 633–644.
- 12 Bishop, J. E., H. Rapoport, A. V. Klotz, C. F. Chan, A. N. Glazer, P. Füglistaller and H. Zuber(1987) Chromopeptides from phycoerythrocyanin. Structure and linkage of three bilin groups. J. Am. Chem. Soc. 109, 875–881.
- 13 Björn, G. S.(1978) Phycochromes a, b and c. Physiol. Plant. 36, 247–302.
- 14 Björn, G. S.(1980) Phycochromes b and d: their occurrence in some phycoerythrocyanin-containing blue-green alga (cyanobacteria). Physiol. Plant. 48, 483–485.
- 15 Siebzehnrübl, S., R. Fischer, W. Kufer and H. Scheer(1989) Photochemistry of phycobiliproteins: reciprocity of reversible photochemistry and aggregation in phycoerythrocyanin from Mastigocladus laminosus. Photochem. Photobiol. 49, 753–761.
- 16 Kufer, W. and G. S. Björn(1989) Photochromism of the cy-anobacterial light harvesting biliprotein phycoerythrocyanin. Physiol. Plant. 75, 389–394.
- 17 Maruthi Sai, P. S., S. Siebzehnrübl, S. Mahajan and H. Scheer(1992) Phycoerythrocyanins from Westiellopsis prolifica and Nostoc rivulare: characterisation of the phycoviolobilin chro-mophore in both states. Photochem. Photobiol. 55, 119–124.
- 18 Bogorad, L.(1975) Phycobiliproteins and complementary chromatic adaptation. Annu. Rev. Plant. Physiol. 26, 369–401.
- 19 Björn, L. O. and G. S. Björn(1980) Photochromic pigments from blue-green algae. Photochem. Photobiol. 32, 849–852.
- 20 Stanier, R. Y., R. Kunisawa, M. Mandel and G. Cohen-Bazire(1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205.
- 21 Gantt, E., C. A. Lipschultz, J. Grabowski and B. K. Zimmer-mann(1979) Phycobilisomes from blue green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 63, 615–620.
- 22 Laemmli, U. K.(1970) Cleavage of structural proteins during the assembly of the head of bacteriopharge T4. Nature 227, 680–685.
- 23 Scheer, H.(1981) Biliproteins. Angew. Chem. 93, 230–250.
- 00 Scheer, H.(1981) Biliproteins. Angew. Chem. Int. Ed. Engl. 20, 241–261.
- 24 MacColl, RR G. O'Connor, G. Croften and K. Csatorday(1981) Phycoerythrocyanin: its spectroscopic behaviour and properties. Photochem. Photobiol. 34, 719–723.
- 25 Kufer, W.(1988) Concerning the relationship of light harvesting biliproteins to phycochromes in cyanobacteria. In Pho-tosynthetic Light Harvesting Systems (Edited by H. Scheer and S. Schneider), pp. 89–93. De Gruyter, Berlin .
- 26 Siebzehnrübl, S.(1990) Chromophor-Zordnung und reversible Photochemie von C-Phycocyaninen und Phycoerythro-cyaninen. Dissertation, Universität, München .
- 27
Rüdiger, W. and
F. Thümmler(1991) Phytochrome, das Seh-pigment der Pflanzen.
Angew. Chem.
103, 1242–1254.
10.1002/ange.19911031005 Google Scholar
- 28
Falk, H.(1989) The chemistry of linear oligopyrroles and bile pigments. Springer,
Wien
,
New York
.
10.1007/978-3-7091-6938-4 Google Scholar
- 29 Fischer, R., S. Siebzehnrübl and H. Scheer(1988) C-phyco-cyanin from Mastigocladus laminosus: chromophore assignment in higher aggregates by cystein modification. In Photosyn-thetic Light Harvesting Systems (Edited by H. Scheer and S. Schneider), pp. 71–76. De Gruyter, Berlin .