Crystal Structures of Human Dipeptidyl Peptidase IV in its Apo and Diprotin B-complexed Forms
Shigeru SUGIYAMA
Maruwa Food Industries Inc., Nara 639-1123, Japan
Mol Logics Inc., Kyoto 619-0237, Japan
Search for more papers by this authorCorresponding Author
Ryo SHIMIZU
Tanabe Seiyaku Co. Ltd, Osaka 532-8505, Japan
*Corresponding author: Tel, 81-6-63002568; Fax, 81-6-63002528; E-mail, [email protected]Search for more papers by this authorShigeru SUGIYAMA
Maruwa Food Industries Inc., Nara 639-1123, Japan
Mol Logics Inc., Kyoto 619-0237, Japan
Search for more papers by this authorCorresponding Author
Ryo SHIMIZU
Tanabe Seiyaku Co. Ltd, Osaka 532-8505, Japan
*Corresponding author: Tel, 81-6-63002568; Fax, 81-6-63002528; E-mail, [email protected]Search for more papers by this authorAbstract
Dipeptidyl peptidase IV (DPPIV), which belongs to the prolyloligopeptidase family of serine proteases, is known to have a variety of regulatory biological functions and has been shown to be implicated in type 2 diabetes. It is therefore important to develop selective human DPPIV (hDPPIV) inhibitors. In this study, we determined the crystal structure of apo hDPPIV at 1.9 Å resolution. Our high-resolution crystal structure of apo hDPPIV revealed the presence of sodium ion and glycerol molecules at the active site. In order to elucidate the hDPPIV binding mode and substrate specificity, we determined the crystal structure of hDPPIV-diprotin B (Val-Pro-Leu) complex at 2.1 Å resolution, and clarified the difference in binding mode between diprotin B and diprotin A (Ile-Pro-Ile) into the active site of hDPPIV. Comparison between our crystal structures and the reported apo hDPPIV structures revealed that positively charged functional groups and conserved water molecules contributed to the interaction of ligands with hDPPIV. These results are useful for the design of potent hDPPIV inhibitors.
References
- 1 Hopsu-Havu VK, Glenner GG A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966, 7: 197–201.
- 2 De Meester I, Korom S, Van Damme J, Scharpé S CD26, let it cut or cut it down. Immunol Today 1999, 20: 367–375.
- 3 Bednarczyk JL, Carroll SM, Marin C, McIntyre BW Triggering of the proteinase dipeptidyl peptidase IV (CD26) amplifies human T lymphocyte proliferation. J Cell Biochem 1991, 46: 206–218.
- 4 Ajami K, Abbott CA, Obradovic M, Gysbers V, Kähne T, MaCaughan GW, Gorrell MD Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry 2003, 42: 694–701.
- 5 Blanco J, Valenzuela A, Herrera C, Lluís C, Hovanessian AG, Franco R The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett 2000, 477: 123–128.
- 6 Mentlein R, Gallwitz B, Schmidt WE Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993, 214: 829–835.
- 7 Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, Ribel U. et al Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA 2000, 97: 6874–6879.
- 8 Ahrén B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson PA, Sandqvist M. et al Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 2002, 25: 869–875.
- 9 Hiramatsu H, Kyono K, Higashiyama Y, Fukushima C, Shima H, Sugiyama S, Inaka K. et al The structure and function of human dipeptidyl peptidase IV (DPPIV), possessing a unique eight-bladed β-propeller fold. Biochem Biophys Res Commun 2003, 302: 849–854.
- 10 Hiramatsu H, Yamamoto A, Kyono K, Higashiyama Y, Fukushima C, Shima H, Sugiyama S. et al The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol Chem 2004, 385: 561–564.
- 11 Rasmussen HB, Branner S, Wiberg FC, Wagtmann N Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature Struct Biol 2003, 10: 19–25.
- 12 Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, Huber R. et al The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA 2003, 100: 5063–5068.
- 13 Thoma R, Löffler B, Stihle M, Huber W, Ruf A, Henning M Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 2003, 11: 947–959.
- 14 Oefner C, D'Arcy A, Mac Sweeney A, Pierau S, Gardiner R, Dale GE High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1 -[([2-[(5-iodopyrid in-2 -yl)amino—-ethyl—amino)-acetyl—-2-cyano-(S)-pyrrolidine. Acta Crystallogr D 2003, 59: 1206–1212.
- 15 Aertgeerts K, Ye S, Tennant MG, Kraus ML, Rogers J, Sang BC, Skene RJ. et al Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci 2004, 13: 412–421.
- 16 Peters JU, Weber S, Kritter S, Weiss P, Wallier A, Boehringer M, Hennig M. et al Aminomethylpyrimidines as novel DPP-IV inhibitors: A 10(5)-fold activity increase by optimization of aromatic substituents. Bioorg Med Chem Lett 2004, 14: 1491–1493.
- 17 Bjelke JR, Christensen J, Branner S, Wagtmann N, Olsen C, Kanstrup AB, Rasmussen HB Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 2004, 279: 34691–34697.
- 18 Weihofen WA, Liu J, Reutter W, Saenger W, Fan H Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J Biol Chem 2004, 279: 43330–43335.
- 19 Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H, Hickey GJ. et al (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4—triazolo[4,3-a—pyrazin-7(8H)-yl—-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005, 48: 141–151.
- 20 Weihofen WA, Liu J, Reutter W, Saenger W, Fan H Crystal structures of HIV-1 Tat-derived nonapeptides Tat-(1-9) and Trp2–Tat-(1-9) bound to the active site of dipeptidyl-peptidase IV (CD26). J Biol Chem 2005, 280: 14911–14917.
- 21 Qiao L, Baumann CA, Crysler CS, Ninan NS, Abad MC, Spurlino JC, Desjarlais R. et al Discovery, SAR, and X-ray structure of novel biaryl-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2006, 16: 123–128.
- 22 Engel M, Hoffmann T, Manhart S, Heiser U, Chambre S, Huber R, Demuth HU. et al Rigidity and flexibility of dipeptidyl peptidase IV: Crystal structures of and docking experiments with DPIV. J Mol Biol 2006, 355: 768–783.
- 23 Nordhoff S, Cerezo-Galvez S, Feurer A, Hill O, Matassa VG, Metz G, Rummey C. et al The reversed binding of β-phenethylamine inhibitors of DPP-IV: X-ray structures and properties of novel fragment and elaborated inhibitors. Bioorg Med Chem Lett 2006, 16: 1744–1748.
- 24 Nakasako M Large-scale networks of hydration water molecules around bovine β-trypsin revealed by cryogenic X-ray crystal structure analysis. J Mol Biol 1999, 289: 547–564.
- 25 Zhang Z, Komives EA, Sugio S, Blacklow SC, Narayana N, Xuong NH, Stock AM. et al The role of water in the catalytic efficiency of triosephosphate isomerase. Biochemistry 1999, 38: 4389–4397.
- 26 Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H. et al Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci USA 1994, 91: 1089–1093.
- 27 Rahfeld J, Schierhorn M, Hartrodt B, Neubert K, Heins J Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV. Biochim Biophy Acta 1991, 1076: 314–316.
- 28 Umezawa H, Aoyagi T, Ogawa K, Naganawa H, Hamada M, Takeuchi T Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J Antibiotics 1984, 37: 422–425.
- 29 Hiramatsu H, Kyono K, Shima H, Fukushima C, Sugiyama S, Inaka K, Yamamoto A. et al Crystallization and preliminary X-ray study of human dipeptidyl peptidase IV. Acta Crystallogr D 2003, 59: 595–596.
- 30 Leslie AGW Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newsl Protein Crystallogr 1992, 26: 22–33.
- 31 Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr D 1994, 50: 760–763.
- 32 Brünger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang JS. et al Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 1998, 54: 905–921.
- 33 Laskowski RA Procheck: A program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26: 283–291.
- 34 Kleywegt GJ, Jones TA. Halloween…Masks and bones. In: S Bailey, R Hubbard, D Wallereds . From First Map to Final Model. SERC Daresbury Laboratory. Warrington , 1994: 59–66.
- 35 Nayal M, Di Cera E Valence screening of water in protein crystals reveals potential Na+ binding sites. J Mol Biol 1996, 256: 228–234.
- 36 Brown ID, Wu KK Empirical parameters for calculating cation-oxygen bond valence. Acta Crystallogr B 1976, 32: 1957–1959.
- 37 Brown ID Chemical and steric constraints in inorganic solids. Acta Crystallogr B 1992, 48: 553–572.
- 38 Nayal M, Di Cera E Predicting Ca2+-binding sites in proteins. Proc Natl Acad Sci USA 1994, 91: 817–821.
- 39 Sutor DJ The C- H···O hydrogen bond in crystals. Nature 1962, 195: 68–69.
- 40 Taylor R, Kennard O Crystallographic evidence for the existence of C- H···O, C- H···N, and C- H···Cl hydrogen bonds. J Am Chem Soc 1982, 104: 5063–5070.
- 41 Steiner T, Saenger W Role of C- H···O hydrogen bonds in the coordination of water molecules. J Am Chem Soc 1993, 115: 4540–4547.
- 42 Derewenda ZS, Lee L, Derewenda U The occurrence of C-H···O hydrogen bonds in proteins. J Mol Biol 1995, 252: 248–622.
- 43 Lee B, Richards FM The interaction of protein structures: Estimation of static accessibility. J Mol Biol 1971, 55: 379–400.