Ecto-calreticulin in immunogenic chemotherapy
Michel Obeid
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorAntoine Tesniere
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorTheocharis Panaretakis
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorRoberta Tufi
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorNick Joza
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorPeter Van Endert
INSERM, U580, Paris, France
Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
Search for more papers by this authorFrançois Ghiringhelli
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorLionel Apetoh
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Search for more papers by this authorNathalie Chaput
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorCaroline Flament
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorEvelyn Ullrich
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Search for more papers by this authorStéphane De Botton
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Service d'Hématologie Clinique, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorLaurence Zitvogel
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
*Guido Kroemer and Laurence Zitvogel share senior authorship.
Search for more papers by this authorGuido Kroemer
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
*Guido Kroemer and Laurence Zitvogel share senior authorship.
Search for more papers by this authorMichel Obeid
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorAntoine Tesniere
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorTheocharis Panaretakis
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorRoberta Tufi
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorNick Joza
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Search for more papers by this authorPeter Van Endert
INSERM, U580, Paris, France
Faculté de Médecine René Descartes, Université Paris Descartes, Paris, France
Search for more papers by this authorFrançois Ghiringhelli
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorLionel Apetoh
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Search for more papers by this authorNathalie Chaput
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorCaroline Flament
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorEvelyn Ullrich
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Search for more papers by this authorStéphane De Botton
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
Service d'Hématologie Clinique, Institut Gustave Roussy, Villejuif, France
Search for more papers by this authorLaurence Zitvogel
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
INSERM, U805, Villejuif, France
Centre d'investigation clinique Biothérapie, CBT507, Institut Gustave Roussy, Villejuif, France
*Guido Kroemer and Laurence Zitvogel share senior authorship.
Search for more papers by this authorGuido Kroemer
INSERM, U848, Villejuif, France
Institut Gustave Roussy, Villejuif, France
Faculté Paris Sud-Université Paris 11, Villejuif, France
*Guido Kroemer and Laurence Zitvogel share senior authorship.
Search for more papers by this authorAbstract
Summary: The conventional treatment of cancer relies upon radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Nonetheless, there are circumstances in which conventional anti-cancer therapy can induce a modality of cellular demise that elicits innate and cognate immune responses, which in turn mediate part of the anti-tumor effect. Although different chemotherapeutic agents may kill tumor cells through an apparently homogeneous apoptotic pathway, they differ in their capacity to stimulate immunogenic cell death. We discovered that the pre-apoptotic translocation of intracellular calreticulin (endo-CRT) to the plasma membrane surface (ecto-CRT) is critical for the recognition and engulfment of dying tumor cells by dendritic cells. Thus, anthracyclines and γ-irradiation that induce ecto-CRT cause immunogenic cell death, while other pro-apoptotic agents (such as mitomycin C and etoposide) induce neither ecto-CRT nor immunogenic cell death. Depletion of CRT abolishes the immunogenicity of cell death elicited by anthracyclines, while exogenous supply of CRT or enforcement of CRT exposure by pharmacological agents that favor CRT translocation can enhance the immunogenicity of cell death. For optimal anti-tumor vaccination and immunogenic chemotherapy, the same cells have to expose ecto-CRT and to succumb to apoptosis; if these events affect different cells, no anti-tumor immune response is elicited. These results may have far reaching implications for tumor immunology because (i) ecto-CRT exposure by tumor cells allows for the prediction of therapeutic outcome and because (ii) the re-establishment of ecto-CRT may ameliorate the efficacy of chemotherapy.
References
- 1 Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.
- 2 Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 2006; 5: 649–659.
- 3 Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006; 90: 51–81.
- 4 Pure E, Allison JP, Schreiber RD. Breaking down the barriers to cancer immunotherapy. Nat Immunol 2005; 6: 1207–1210.
- 5 Saito H, Dubsky P, Dantin C, Finn OJ, Banchereau J, Palucka AK. Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8+ T cells by dendritic cells loaded with killed allogeneic breast cancer cells. Breast Cancer Res 2006; 8: R65.
- 6 Kershaw MH, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12: 6106–6115.
- 7 Ghiringhelli F, Apetoh L, Housseau F, Kroemer G, Zitvogel L. Links between innate and cognate tumor immunity. Curr Opin Immunol 2007; 19: 224–231.
- 8 Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002; 2: 965–975.
- 9 Krysko DV, D'Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 2006; 11: 1709–1726.
- 10 Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 2006; 27: 244–250.
- 11 Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407: 784–788.
- 12 Kroemer G, et al. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 2005; 12 (Suppl): 1463–1467.
- 13 Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.
- 14 Galluzzi L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14: 1237–1243.
- 15 Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002; 109: 41–50.
- 16 Kim S, Elkon KB, Ma X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 2004; 21: 643–653.
- 17 Matzinger P. The danger model: a renewed sense of self. Science 2002; 296: 301–305.
- 18 Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3: E255–E263.
- 19 Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.
- 20 Zitvogel L, Casares N, Pequignot MO, Chaput N, Albert ML, Kroemer G. Immune response against dying tumor cells. Adv Immunol 2004; 84: 131–179.
- 21 Albert ML. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nat Rev Immunol 2004; 4: 223–231.
- 22 Apetoh L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotehrapy and radiotherapy. Nat Med 2007; 13: 1050–1059.
- 23 Blachere NE, Darnell RB, Albert ML. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol 2005; 3: e185.
- 24 Palucka AK, et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother 2006; 29: 545–557.
- 25 Zitvogel L, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998; 4: 594–600.
- 26 Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6: 715–727.
- 27 Wolfers J, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7: 297–303.
- 28 Tesniere A, Zitvogel L, Kroemer G. The immune system: taming and unleashing cancer. Discov Med 2006; 6: 211–216.
- 29 Casares N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005; 202: 1691–1701.
- 30 Obeid M, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.
- 31 Lake RA, Van Der Most RG. A better way for a cancer cell to die. N Engl J Med 2006; 354: 2503–2504.
- 32 Obeid M, et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007;27 Jul 2007.
- 33 Williams DB. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 2006; 119: 615–623.
- 34 Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 2005; 37: 260–266.
- 35 Bedard K, Szabo E, Michalak M, Opas M. Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Int Rev Cytol 2005; 245: 91–121.
- 36 Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003; 425: 397–402.
- 37 Gardai SJ, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123: 321–334.
- 38 Shu S, Rosenberg SA. Adoptive immunotherapy of a newly induced sarcoma: immunologic characteristics of effector cells. J Immunol 1985; 135: 2895–2903.
- 39 Franz S, et al. After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ 2007; 14: 733–742.
- 40 Gardai SJ, Bratton DL, Ogden CA, Henson PM. Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 2006; 79: 896–903.
- 41 Boyce M, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005; 307: 935–939.
- 42 Srivastava PK. Therapeutic cancer vaccines. Curr Opin Immunol 2006; 18: 201–205.
- 43 Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 1999; 189: 797–802.
- 44 Clarke C, Smyth MJ. Calreticulin exposure increases cancer immunogenicity. Nat Biotechnol 2007; 25: 192–193.
- 45 Kuraishi T, et al. Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp Cell Res 2007; 313: 500–510.
- 46 Storkus WJ, Falo LD Jr. A ‘good death’ for tumor immunology. Nat Med 2007; 13: 28–30.
- 47 Groenendyk J, Lynch J, Michalak M. Calreticulin, Ca2+, and calcineurin – signaling from the endoplasmic reticulum. Mol Cells 2004; 17: 383–389.
- 48 Coppolino MG, Woodside MJ, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 1997; 386: 843–847.
- 49 Kwon MS, et al. Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling. Mol Biol Cell 2000; 11: 1433–1443.
- 50 Oliver JD, Roderick HL, Llewellyn DH, High S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 1999; 10: 2573–2582.
- 51 Silvennoinen L, et al. Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains. J Biol Chem 2004; 279: 13607–13615.
- 52 Afshar N, Black BE, Paschal BM. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol Cell Biol 2005; 25: 8844–8853.
- 53 Shaffer KL, Sharma A, Snapp EL, Hegde RS. Regulation of protein compartmentalization expands the diversity of protein function. Dev Cell 2005; 9: 545–554.
- 54 Decca MB, et al. Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J Biol Chem 2007; 282: 8237–8245.
- 55 Holaska JM, Black BE, Rastinejad F, Paschal BM. Ca2+-dependent nuclear export mediated by calreticulin. Mol Cell Biol 2002; 22: 6286–6297.
- 56 Nanni P, De Giovanni C, Lollini PL, Nicoletti G, Prodi G. TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin Exp Metastasis 1983; 1: 373–380.
- 57 Martin F, Caignard A, Jeannin JF, Leclerc A, Martin M. Selection by trypsin of two sublines of rat colon cancer cells forming progressive or regressive tumors. Int J Cancer 1983; 32: 623–627.
- 58 Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004; 279: 25935–25938.
- 59 Gupta V, Ogawa AK, Du X, Houk KN, Armstrong RW. A model for binding of structurally diverse natural product inhibitors of protein phosphatases PP1 and PP2A. J Med Chem 1997; 40: 3199–3206.
- 60 Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21: 5018–5030.
- 61 Scheuner D, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 2001; 7: 1165–1176.
- 62 Chignard N, et al. Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma: detection of generated fragments in patient sera. Gastroenterology 2006; 130: 2010–2022.
- 63 Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem 2004; 279: 51250–51257.
- 64 Balkhi MY, et al. Proteomics of acute myeloid leukaemia: cytogenetic risk groups differ specifically in their proteome, interactome and post-translational protein modifications. Oncogene 2006; 25: 7041–7058.
- 65 Hsu WM, et al. Calreticulin expression in neuroblastoma-a novel independent prognostic factor. Ann Oncol 2005; 16: 314–321.
- 66 Prigione I, et al. Immunogenicity of human neuroblastoma. Ann NY Acad Sci 2004; 1028: 69–80.
- 67 Banerjea A, et al. Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol Cancer 2004; 3: 21.
- 68 Ogino T, et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 2006; 66: 9281–9289.