Astaxanthin, canthaxanthin and β-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes
Emanuela Camera
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorArianna Mastrofrancesco
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Search for more papers by this authorClaudia Fabbri
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Search for more papers by this authorFelicitas Daubrawa
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorMauro Picardo
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Search for more papers by this authorHelmut Sies
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorWilhelm Stahl
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorEmanuela Camera
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorArianna Mastrofrancesco
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Search for more papers by this authorClaudia Fabbri
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Search for more papers by this authorFelicitas Daubrawa
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorMauro Picardo
Laboratorio di Fisiopatologia Cutanea, Istituto Dermatologico San Gallicano (IRCCS), Rome, Italy
Search for more papers by this authorHelmut Sies
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorWilhelm Stahl
Institut für Biochemie und Molekularbiologie I, Heinrich Heine Universität, Düsseldorf, Germany
Search for more papers by this authorAbstract
Abstract: Carotenoids are used for systemic photoprotection in humans. Regarding mechanisms underlying photoprotective effects of carotenoids, here we compared the modulation of UVA-related injury by carotenoids. Human dermal fibroblasts (HDF) were exposed to moderate doses of UVA, which stimulated apoptosis, increased levels of reactive oxygen species and thiobarbituric acid reactive substances, decreased antioxidant enzymes activities, promoted membrane perturbation, and induced the expression of heme oxygenase-1 (HO-1). The carotenoids astaxanthin (AX), canthaxanthin (CX) and β-carotene (βC) were delivered to HDF 24 h before exposure to UVA. Astaxanthin exhibited a pronounced photoprotective effect and counteracted all of the above-mentioned UVA-induced alterations to a significant extent. β-Carotene only partially prevented the UVA-induced decline of catalase and superoxide dismutase activities, but it increased membrane damage and stimulated HO-1 expression. Moreover, βC dose-dependently induced caspase-3 activity following UVA exposure. In contrast, CX had no effect on oxidative damage, except for HO-1 expression, which was augmented. Uptake of AX by fibroblasts was higher than that of the other two carotenoids. The photostability of the three compounds in fibroblasts was AX > CX >> βC. The data indicate that the oxo-carotenoid AX has a superior preventive effect towards photo-oxidative changes in cell culture.
References
- 1 Ichihashi M, Ueda M, Budiyanto A et al. UV-induced skin damage. Toxicology 2003: 189: 21–39.
- 2 Dalle Carbonare M, Pathak M A. Skin photosensitizing agents and the role of reactive oxygen species in photoaging. J Photochem Photobiol B 1992: 14: 105–124.
- 3 Wondrak G T, Jacobson M K, Jacobson E L. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 2006: 5: 215–237.
- 4 Berneburg M, Grether-Beck S, Kurten V et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem 1999: 2742: 15345–15349.
- 5 Wlaschek M, Briviba K, Stricklin G P, Sies H, Scharffetter-Kochanek K. Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J Invest Dermatol 1995: 104: 194–198.
- 6 Scharffetter-Kochanek K, Wlaschek M, Brenneisen P et al. UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem 1997: 378: 1247–1257.
- 7 Fisher G J, Datta S C, Talwar H S et al. Molecular basis of sun-induced premature aging and retinoid antagonism. Nature 1996: 379: 335–339.
- 8 Shindo Y, Witt E, Han D, Packer L. Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. J Invest Dermatol 1994: 102: 470–475.
- 9 Steenvoorden D P, Van Henegouwen G M. The use of endogenous antioxidants to improve photoprotection. J Photochem Photobiol B 1997: 41: 1–10.
- 10 Stahl W, Heinrich U, Wiseman S, Eichler O, Sies H, Tronnier H. Dietary tomato paste protects against ultraviolet light-induced erythema in humans. J Nutr 2001: 131: 1449–1451.
- 11 Jańczyk A, Garcia-Lopez M A, Fernandez-Peñas P et al. A Polypodium leucotomos extract inhibits solar-simulated radiation-induced TNF-alpha and iNOS expression, transcriptional activation and apoptosis. Exp Dermatol 2007: 16: 823–829.
- 12 Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989: 274: 532–538.
- 13 Sies H, Stahl W. Nutritional protection against skin damage from sunlight. Annu Rev Nutr 2004: 24: 173–200.
- 14 Greul A K, Grundmann J U, Heinrich F et al. Photoprotection of UV-irradiated human skin: an antioxidative combination of vitamins E and C, carotenoids, selenium and proanthocyanidins. Skin Pharmacol Appl Skin Physiol 2002: 15: 307–315.
- 15 Jacobson M K, Kim H, Coyle W R et al. Effect of myristyl nicotinate on retinoic acid therapy for facial photodamage. Exp Dermatol 2007: 16: 927–935.
- 16 Burton G W, Ingold K U. beta-Carotene: an unusual type of lipid antioxidant. Science 1984: 224: 569–573.
- 17 Biesalski H K, Obermüller-Jevic U C. UV light, beta-carotene and human skin-beneficial and potentially harmful effects. Arch Biochem Biophys 2001: 389: 1–6.
- 18 Fuchs J. Potentials and limitations of the natural antioxidants RRR-alpha-tocopherol, L-ascorbic acid and beta-carotene in cutaneous photoprotection. Free Radic Biol Med 1998: 25: 848–873.
- 19 Eicker J, Kürten V, Wild S et al. Betacarotene supplementation protects from photoaging-associated mitochondrial DNA mutation. Photochem Photobiol Sci 2003: 2: 655–659.
- 20 Césarini J P, Michel L, Maurette J M, Adhoute H, Béjot M. Immediate effects of UV radiation on the skin: modification by an antioxidant complex containing carotenoids. Photodermatol Photoimmunol Photomed 2003: 19: 182–189.
- 21 Swindells K, Rhodes L E. Influence of oral antioxidants on ultraviolet radiation-induced skin damage in humans. Photodermatol Photoimmunol Photomed 2004: 20: 297–304.
- 22 Wertz K, Hunziker P B, Seifert N et al. beta-Carotene interferes with ultraviolet light A-induced gene expression by multiple pathways. J Invest Dermatol 2005: 124: 428–434.
- 23 Palozza P, Krinsky N I. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 1992: 297: 291–295.
- 24 Mathews-Roth M M. Carotenoids in erythropoietic protoporphyria and other photosensitivity diseases. Ann N Y Acad Sci 1993: 691: 127–138.
- 25 Kennedy A R, Krinsky N I. Effects of retinoids, beta-carotene, and canthaxanthin on UV- and X-ray-induced transformation of C3H10T1/2 cells in vitro. Nutr Cancer 1994: 22: 219–232.
- 26 Savouré N, Briand G, Amory-Touz M C, Combre A, Maudet M, Nicol M. Vitamin A status and metabolism of cutaneous polyamines in the hairless mouse after UV irradiation: action of beta-carotene and astaxanthin. Int J Vitam Nutr Res 1995: 65: 79–86.
- 27 Eichler O, Sies H, Stahl W. Divergent optimum levels of lycopene, beta-carotene and lutein protecting against UVB irradiation in human fibroblastst. Photochem Photobiol 2002: 75: 503–506.
- 28 Zhang L X, Cooney R V, Bertram J S. Carotenoids up-regulate connexin43 gene expression independent of their provitamin A or antioxidant properties. Cancer Res 1992: 52: 5707–5712.
- 29 Stahl W, Von Laar J, Martin H D, Emmerich T, Sies H. Stimulation of gap junctional communication: comparison of acyclo-retinoic acid and lycopene. Arch Biochem Biophys 2000: 373: 271–274.
- 30 Offord E A, Gautier J C, Avanti O et al. Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic Biol Med 2002: 32: 1293–1303.
- 31 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983: 652: 55–63.
- 32 Ohshima S. Apoptosis and necrosis in senescent human fibroblasts. Ann N Y Acad Sci 2006: 1067: 228–234.
- 33 Didier C, Kerblat I, Drouet C, Favier A, Beani J C, Richard M J. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts. Free Radic Biol Med 2001: 31: 585–598.
- 34 Larsson P, Andersson E, Johansson U, Öllinger K, Rosdahl I. Ultraviolet A and B affect human melanocytes and keratinocytes differently. A study of oxidative alterations and apoptosis. Exp Dermatol 2005: 14: 117–123.
- 35 Jentzsch A M, Bachmann H, Fürst P, Biesalski H K. Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 1996: 20: 251–256.
- 36 Claiborne A. Catalase activity. In: R A Greenwald, ed. Handbook of Methods for Oxygen Radical Research. Boca Raton: CRC Press, 1985: 283–284.
- 37 Spitz D R, Oberley L W. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 1989: 179: 8–18.
- 38 Keyse S M, Tyrrell R M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989: 86: 99–103.
- 39 Trekli M C, Riss G, Goralczyk R, Tyrrell R M. Beta-carotene suppresses UVA-induced HO-1 gene expression in cultured FEK4. Free Radic Biol Med 2003: 34: 456–464.
- 40 Steghens J-P, Van Kappel A L, Riboli E, Collombel C. Simultaneous measurement of seven carotenoids, retinol and α-tocopherol in serum by high-performance liquid chromatography. J Chromatogr B 1997: 694: 71–81.
- 41 O’Sullivan L, Ryan L, O’Brien N. Comparison of the uptake and secretion of carotene and xanthophyll carotenoids by Caco-2 intestinal cells. Br J Nutr 2007: 98: 38–44.
- 42 Godar D E. UV doses worldwide. Photochem Photobiol 2005: 81: 736–749.
- 43 Maresca V, Flori E, Briganti S et al. UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype. J Invest Dermatol 2006: 126: 182–190.
- 44 Miller N J, Sampson J, Candeias L P, Bramley P M, Rice-Evans C A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996: 384: 240–242.
- 45 Chew B P, Park J S, Wong M W, Wong T S. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res 1999: 19: 1849–1853.
- 46 Ohshima S. Apoptosis in stress-induced and spontaneously senescent human fibroblasts. Biochem Biophys Res Commun 2004: 324: 241–246.
- 47 Thornberry N A, Lazebnik Y. Caspases: enemies within. Science 1998: 281: 1312–1316.
- 48 Gaboriau F, Morlière P, Marquis I, Moysan A, Gèze M, Dubertret L. Membrane damage induced in cultured human skin fibroblasts by UVA irradiation. Photochem Photobiol 1993: 58: 515–520.
- 49 Woodall A A, Britton G, Jackson M J. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1997: 1336: 575–586.
- 50 Woodall A A, Lee S W, Weesie R J, Jackson M J, Britton G. Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim Biophys Acta 1997: 1336: 33–42.
- 51 Lim B P, Nagao A, Terao J, Tanaka K, Suzuki T, Takama K. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipids peroxidation. Biochim Biophys Acta 1992: 1126: 178–184.
- 52 Young A J, Lowe G M. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 2001: 385: 20–27.
- 53 El-Agamey A, Lowe G M, McGarvey D J et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 2004: 430: 37–48.
- 54 Palozza P, Calviello G, Serini S et al. beta-carotene at high concentrations induces apoptosis by enhancing oxy-radical production in human adenocarcinoma cells. Free Radic Biol Med 2001: 30: 1000–1007.
- 55 Applegate L A, Luscher P, Tyrrell R M. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 1991: 51: 974–978.
- 56 Alam J, Stewart D, Touchard C, Boinapally S, Choi A M, Cook J L. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999: 274: 26071–26078.
- 57 Obermüller-Jevic U C, Francz P I, Frank J, Flaccus A, Biesalski H K. Enhancement of the UVA induction of haem oxygenase-1 expression by beta-carotene in human skin fibroblasts. FEBS Lett 1999: 460: 212–216.
- 58 Obermüller-Jevic U C, Schlegel B, Flaccus A, Biesalski H K. The effect of beta-carotene on the expression of interleukin-6 and heme oxygenase-1 in UV-irradiated human skin fibroblasts in vitro. FEBS Lett 2001: 509: 186–190.
- 59 Basu-Modak S, Lüscher P, Tyrrell R M. Lipid metabolite involvement in the activation of the human heme oxygenase-1 gene. Free Radic Biol Med 1996: 20: 887–897.
- 60 Köpcke W, Krutmann J. Protection from Sunburn with beta-Carotene-A Meta-analysis. Photochem Photobiol 2008: 84: 284–288.