The influence of theophylline and phenobarbital on rat brain 5′-nucleotidase
Corresponding Author
M.H. Jensen
Institute of Anesthetics, Odense University, Denmark
*Mogens H. Jensen, M.D. Department of Anaesthesiology Bispebjerg University Hospital Bispebjerg Bakke 23 DK-2400 Copenhagen NV DenmarkSearch for more papers by this authorJ.B. Jacobsen
Institute of Anesthetics, Odense University, Denmark
Search for more papers by this authorCorresponding Author
M.H. Jensen
Institute of Anesthetics, Odense University, Denmark
*Mogens H. Jensen, M.D. Department of Anaesthesiology Bispebjerg University Hospital Bispebjerg Bakke 23 DK-2400 Copenhagen NV DenmarkSearch for more papers by this authorJ.B. Jacobsen
Institute of Anesthetics, Odense University, Denmark
Search for more papers by this authorAbstract
Abstract Xanthines and barbiturates have opposing effects on cerebral function and metabolism. Since the xanthine theophylline is known to inhibit the enzyme 5′-nucleotidase, and thus endogenic adenosine release, an in vitro experiment was conducted on the assumption that theophylline and phenobarbital may have an opposing effect on 5′-nucleotidase activity. This assumption was confirmed. The hypothesis that barbiturates in general cause an increase in endogenic adenosine release seems compatible with the known functional and metabolic effects of barbiturates. Furthermore, accepting the hypothesis that cellular hypoxic-anoxic survival may ultimately depend on salvage of adenine nucleotides, this may even explain the dichotomy in the effect of barbiturates when used for protection of a hypoxicanoxic insult.
REFERENCES
- 1 Arnfred I, Secher O. Anoxia and barbiturates. Arch Int Pharmacodyn 1962: 139: 67–74.
- 2 Wilhjelm BJ, Arnfred I. Protective action of some anaesthetics against anoxia. Acta Pharmacol Toxicol 1965: 22: 93–98.
- 3 Aitkenhead AR. Do barbiturates protect the brain Br J Anaesth 1981: 53: 1011–1013.
- 4 Belopaulovic M, Buchtal A. Barbiturate theraphy in cerebral ischemia. Anaesthesia 1980: 35: 235–245.
- 5 Fitch W. Protection of the brain from ischemia. Br J Anaesthesiol 1981: 53: 201–202.
- 6 Michenfelder JD. Hypothermia plus barbiturates: apples and oranges Anesthesiology 1978: 49: 157–158.
- 7 Rockoff MA, Sharpiro HM. Barbiturates following cardiac arrest: possible benefit or Pandoras Box Anesthesiology 1978: 49: 385–387.
- 8 Safar P, Nemoto E. Brain resuscitation. Acta Anaesthesiol Scand 1978:(Suppl) 70: 60–74.
- 9 Smith AL. Barbiturate protection in cerebral hypoxia. Anesthesiology 1977: 47: 285–293.
- 10 Steen PA, Michenfelder JD. Mechanisms of barbiturate protection. Anesthesiology 1980: 53: 183–185.
- 11 Steen PA. Barbiturate protection against ischemic brain damage. Scand J Clin Lab Invest 1980: 40: 205–207.
- 12 Michenfelder JD, Theye RA. The effects of anastehesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 1970: 33: 430–439.
- 13 Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology 1973: 39: 510–517.
- 14 Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 1974: 41: 231–236.
- 15 Steen PA, Newberg L, Milde JH, Michenfelder JD. Hypothermia and barbiturates: individual and combined effects on the canine cerebral oxygen consumption. Anesthesiology 1983: 58: 527–532.
- 16 Rall TW. Central nervous system stimulants. The xanthines. In: LS Goodman, LG Gilman, eds. The pharmacological basis of therapeutics. New York , MacMillan, 1980: 592–607.
- 17 Zwillich CW, Sutton FD, Neff TA, et al. Theophylline induced seizures in adults. Ann Intern Med 1975: 82: 784–787.
- 18 Thurston JH, Hauhart RE, Dirgo JA. Aminophylline increases cerebral metabolic rate and decreases anoxic survival in young mice. Science 1978: 201: 649–651.
- 19 Arch JRS, Newholme EA. The control of metabolism and the hormonal role of adenosine. Essays in Biochemistry 1978: 14: 82–123.
- 20 Buhl MR, Jensen MH. The role of 5′-nucleotidase in purine depletion of ischemic renal tissue. In: DE Pegg, IA Jacobsen, eds. Organ preservation. London : Churchill-Livingstone, 1979: 239–246.
- 21 Jensen MH. Dephosphorylation of mononucleotides by alkaline phosphatases. Substrate specifity and inhibition patterns. Biochim Biophys Acta 1979: 571: 55–62.
- 22 Tsuzuki J, Newburgh RW. Inhibition of 5′-nucleotidase in rat brain by methylxanthines. J Neurochem 1975: 25: 895–896.
- 23 Buhl MR, Jensen MH. Metabolic inhibition. In: AM Karow, DE Pegg, eds. Organ preservation for Transplantation. New York : Marcel Dekker, 1981: 497–515.
- 24 Itoh R. Regulation of cytosol 5′-nucleotidase by adenylate energy charge. Biochim Biophys Acta 1981: 659: 31–37.
- 25 Hedquist P, Fredholm BB, Ölundh S. Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res 1978: 43: 592–598.
- 26 Hollins C, Stone TW. Adenosine inhibition of GABA release from slices of rat cerebral cortex. Br J Pharmacol 1980: 69: 107–112.
- 27 Phillis JW, Edstrom JP. Effects of adenosine analogs on rat cerebral cortical neurons. Life Sci 1976: 19: 1041–1054.
- 28 Phillis JW, Kostoupolos GK. Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and inhibitors. Life Sci 1975: 17: 1085–1094.
- 29 Phillis JW, Wu PH. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 1981: 16: 187–239.
- 30 Winn HR, Rubio R, Berne RM. The role of adenosine in the regulation of cerebral blood flow. J Cereb Blood Flow Metabol 1981: 1: 239–244.
- 31 Goodmann RR, Kuhar MJ, Hester L, Snyder SH. Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 1983: 220: 967–968.
- 32 Steen PA, Milde JH, Michenfelder JD. Cerebral metabolic and vascular effects of barbiturate therapy following complete global ischemia. J Neurochem 1978: 31: 1317–1324.
- 33 Bleyaert AL, Nemoto EM, Safar P, et al. Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology 1978: 49: 390–398.
- 34 Carlsson C, Harp JR, Siesjö BK. Metabolic changes in the cerebral cortex of the rat induced by intravenous pentothal-sodium. Acta Anaesthesiol Scand 1975:(Suppl) 57: 7–17.
- 35 Nilsson L, Busto R. Effects of anaestehsia on the energy and acid-base status of the rat brain. Acta Anaesthesiol Scand 1973: 17: 119–128.
- 36 Nilsson L, Siesjö BK. The effect of anaesthetics upon labile phosphates and upon extra- and intracellular lactate, pyruvate and bicarbonate concentrations in the rat brain. Acta Physiol Scand 1970: 80: 235–248.
- 37 Jost U, Bortel HJ, Schmitt M, Hoyer S. Beeinflussung der cerebralen Glycolyse und Atmungskettenoxidation (dem neuronalen energieliefernden Stoffwechsel) durch thiopenthal, flunitrazepam und etomidate im steady state einer standardisierten Inhalationsnarkosen. Anaesthesist 1980: 29: 12–17.
- 38 Wahl M, Kuschinsky W. Dependency of the dilatatory action of adenosine on the perivascular H+ and K+ at pial arteries of cats. Acta Neurol Scand 1977:(Suppl 64) 56: 218–219.
- 39 Nordström C-H, Calderini G, Rehncrone S, Siesjö BK. Effects of phenobarbital anesthesia on postischemic cerebral blood flow and oxygen consumption in the rat. Acta Neurol Scand 1977:(Suppl 64) 56: 146–147.
- 40 Chaudry IH. Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 1983: 245: 117–134.