The paradigm of postconditioning to protect the heart
C. Penna
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorD. Mancardi
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorS. Raimondo
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorS. Geuna
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorCorresponding Author
P. Pagliaro
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
*Correspondence to: Dr Pasquale PAGLIARO, MD, PhD,Dipartimento di Scienze Cliniche eBiologiche, Università di Torino,Ospedale S. Luigi, Regione Gonzole,10043 ORBASSANO, Torino, Italy.Tel.: +39-11 6705430/5450Fax: +39-11 9038639E-mail: [email protected]Search for more papers by this authorC. Penna
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorD. Mancardi
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorS. Raimondo
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorS. Geuna
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
Search for more papers by this authorCorresponding Author
P. Pagliaro
Dipartimento di Scienze Cliniche e Biologiche dell’Università di Torino, Orbassano, Torino, Italy
*Correspondence to: Dr Pasquale PAGLIARO, MD, PhD,Dipartimento di Scienze Cliniche eBiologiche, Università di Torino,Ospedale S. Luigi, Regione Gonzole,10043 ORBASSANO, Torino, Italy.Tel.: +39-11 6705430/5450Fax: +39-11 9038639E-mail: [email protected]Search for more papers by this authorAbstract
- •
Introduction
- •
Reperfusion injury
- -
Causes of reperfusion injury
- -
Effects of reperfusion injury
- -
- •
Definition of postconditioning
- -
Postconditioning algorithm
- -
- •
Protective effects of postconditioning
- -
Infarct size reduction
- -
Reduction of apoptosis
- -
Reduction in endothelial dysfunction
- -
Reduction in endothelial activation, and neutrophil adherence
- -
Reduction of stunning
- -
Anti-arrhythmic effects
- -
- •
Potentiality of postconditioning
- -
Remote postconditioning
- -
Pharmacological postconditioning
- -
Postconditioning the human heart
- -
Postconditioning in diseased hearts
- -
- •
Mechanisms involved in postconditioning
- -
Passive mechanisms
- -
Mechanical mechanisms
- -
Cellular mechanisms
- -
Active mechanisms (intramyocardiocyte mechanisms)
- -
Triggers
- -
Mediators
- -
End effectors
- -
Cardioprotection by pre- and post-conditioning is redox-sensitive
- -
- •
Conclusions
Ischaemic preconditioning limits the damage induced by subsequent ischaemia/reperfusion (I/R). However, preconditioning is of little practical use as the onset of an infarction is usually unpredictable. Recently, it has been shown that the heart can be protected against the extension of I/R injury if brief (10–30 sec.) coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited at a distant organ, termed remote PostC, by intermittent pacing (dyssynchrony-induced PostC) and by pharmacological interventions, that is pharmacological PostC. In particular, brief applications of intermittent bradykinin or diazoxide at the beginning of reperfusion reproduce PostC protection. PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion. PostC induces a reduction of infarct size, apoptosis, endothelial dysfunction and activation, neutrophil adherence and arrhythmias. Whether it reduces stunning is not clear yet. Similar to preconditioning, PostC triggers signalling pathways and activates effectors implicated in other cardioprotective manoeuvres. Adenosine and bradykinin are involved in PostC triggering. PostC triggers survival kinases (RISK), including A t and extracellular signal-regulated kinase (ERK). Nitric oxide, via nitric oxide synthase and non-enzymatic production, cyclic guanosine monophosphate (cGMP) and protein kinases G (PKG) participate in PostC. PostC-induced protection also involves an early redox-sensitive mechanism, and mitochondrial adenosine-5′ -triphosphate (ATP)-sensitive K+ and PKC activation. Protective pathways activated by PostC appear to converge on mitochondrial permeability transition pores, which are inhibited by acidosis and glycogen synthase kinase-3β (GSK-3β). In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering the aforementioned mediators which will in concert lead to protection against reperfusion injury. Pharmacological PostC and possibly remote PostC may have a promising future in clinical scenario.
References
- 1 Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997; 349: 1498–504.
- 2 Jordan JE, Zhao, ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999; 43: 860–78.
- 3 Piper HM, Meuter K, Schafer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg. 2003; 75: S644–8.
- 4 Kusuoka H, Marban E. Cellular mechanisms of myocardial stunning. Annu Rev Physiol. 1992; 54: 243–56.
- 5 Okamoto F, Allen BS, Buckberg GD, Bugyi H, Leaf J. Reperfusion conditions: importance of ensuring gentle versus sudden reperfusion during relief of coronary occlusion. J Thorac Cardiovasc Surg. 1986; 92: 613–20.
- 6 Vinten-Johansen J, Buckberg GD, Okamoto F, Rosenkranz ER, Bugyi H, Leaf J. Superiority of surgical versus medical reperfusion after regional ischemia. J Thorac Cardiovasc Surg. 1986; 92: 525–34.
- 7 Hori M, Kitakaze M, Sato H, Takashima S, Iwakura K, Inoue M, Kitabatake A, Kamada T. Staged reperfusion attenuates myocardial stunning in dogs. Role of transient acidosis during early reperfusion. Circulation. 1991; 84: 2135–45.
- 8 Fontan F, Madonna F, Naftel DC, Kirklin JW, Blackstone EH, Digerness S. The effect of reperfusion pressure on early outcomes after coronary artery bypass grafting. A randomized trial. J Thorac Cardiovasc Surg. 1994; 107: 265–70.
- 9 Lindal S, Gunnes S, Lund I, Straume BK, Jorgensen L, Sorlie D. Myocardial and microvascular injury following coronary surgery and its attenuation by mode of reperfusion. Eur J Cardiothorac Surg. 1995; 9: 83–9.
- 10 Sato H, Jordan JE, Zhao ZQ, Sarvotham SS, Vinten-Johansen J. Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann Thorac Surg. 1997; 64: 1099–107.
- 11 Halldorsson AO, Kronon MT, Allen BS, Rahman S, Wang T. Lowering reperfusion pressure reduces the injury after pulmonary ischemia. Ann Thorac Surg. 2000; 69: 198–203.
- 12 Michel P, Ferrera R. Efficacy of controlled reperfusion by using low pressure after myocardial ischemia in rats. Transplant Proc. 2002; 34: 3260–1.
- 13 Zhao ZQ, Corvera J, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285: H579–88.
- 14 Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006; 70: 240–53.
- 15 Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007; 75: 530–5.
- 16 Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003; 83: 1113–51.
- 17 Hausenloy DJ, Tsang A, Yellon, DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postcondition-ing. Trends Cardiovasc Med. 2005; 15: 69–75.
- 18 Heusch G. Postconditioning: old wine in a new bottle? J Am Coll Cardiol. 2004; 44: 1111–2.
- 19 Solenkova NV, Solodushko V, Cohen MV, Downey JM. Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. Am J Physiol Heart Circ Physiol. 2006; 290: H441–9.
- 20 Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res. 2004; 95: 230–2.
- 21 Sivaraman V, Mudalgiri NR, Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Hausenloy DJ, Yellon DM. Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol. 2007; 102: 453–9.
- 22 Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 2007; 12: 217–34.
- 23 Hausenloy DJ, Yellon DM. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol. 2003; 35: 339–41.
- 24 Hausenloy DJ, Tsang A, Mocanu M, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005; 288: 971–6.
- 25 Tsang A, Hausenloy DJ, Yellon DM. Myocardial postconditioning: reperfusion injury revisited. Am J Physiol Heart Circ Physiol. 2005; 289: 2–7.
- 26 Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res. 2002; 55: 438–55.
- 27 Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004; 62: 74–85.
- 28 Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F. Postconditioning A new link in nature's armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2005; 100: 295–310.
- 29 Mykytenko J, Kerendi F, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ. Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol. 2007; 102: 90–100.
- 30 Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res. 2006; 70: 200–11.
- 31 Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K. ‘Postconditioning’via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK 1/2. Am J Physiol Heart Circ Physiol. 2005; 289: H1618–26.
- 32 Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004; 44: 1103–10.
- 33 Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P. Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res. 2007; 75: 168–77.
- 34 Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol. 2005; 100: 57–63.
- 35 Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol. 2005; 100: 404–12.
- 36 Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, Juhasz ED, Szekely L, Szelid Z, Turner MS, Ashrafian H, Frenneaux MP, Andreka P. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart. 2007; 93: 749–52.
- 37 Cerra FB, Lajos TZ, Montes M, Siegel JH. Hemorrhagic infarction: a reperfusion injury following prolonged myocardial ischemic anoxia. Surgery. 1975; 78: 95–104.
- 38 Chandra R, Baumann FG, Goldman RA. Myocardial reperfusion, a cause of ischemic injury during cardiopulmonary bypass. Surgery. 1976; 80: 266–76.
- 39 Przyklenk K. Lethal myocardial reperfusion injury: the opinions of good men. J Thrombosis Thrombolysis. 1997; 4: 5–6.
- 40 Takemura G, Fujiwara H. Morphological aspects of apoptosis in heart diseases. J Cell Mol Med. 2006; 10: 56–75.
- 41 Reeve JL, Duffy AM, O’Brien T, Samali A. Don't lose heart–therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med. 2005; 9: 609–22.
- 42 Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol. 2002; 31: 214–23.
- 43 Tritto I, Ambrosio G. Role of oxidants in the signaling pathway of preconditioning. Antioxid Redox Signal. 2001; 3: 3–10.
- 44 Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB, Micheli L, Bruni G, Nencini C, Giorgi G, D’Errico S, Fiore C, Pomara C, Riezzo I, Turillazzi E, Fineschi V. Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med. 2007; 11: 156–70.
- 45 Ambrosio G, Flaherty JT, Duilio C, Tritto I, Santoro G, Elia PP, Condorelli M, Chiariello M. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest. 1991; 87: 2056–66.
- 46 Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem. 1993; 268: 18532–41.
- 47 Hoffman JW Jr, Gilbert TB, Poston RS, Silldorff EP. Myocardial reperfusion injury: etiology, mechanisms, and therapies. J Extra Corpor Technol. 2004; 36: 391–411.
- 48 Zhao ZQ. Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr Opin Pharmacol. 2004; 4: 159–65.
- 49 Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals. Circulation. 1997; 96: 2311–6.
- 50 Beauchamp P, Richard V, Tamion F, Lallemand F, Lebreton JP, Vaudry H, Daveau M, Thuillez C. Protective effects of preconditioning in cultured rat endothelial cells: effects on neutrophil adhesion and expression of ICAM-1 after anoxia and reoxygenation. Circulation. 1999; 100: 541–6.
- 51 Lefer AM, Lefer DJ. Endothelial dysfunction in myocardial ischemia and reperfusion: role of oxygen-derived free radicals. Basic Res Cardiol. 1991; 86: 109–16.
- 52 Ronson RS, Nakamura M, Vinten-Johansen J. The cardiovascular effects and implications of peroxynitrite. Cardiovasc Res. 1999; 44: 47–59.
- 53 Ferdinand P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. 2003; 138: 532–43.
- 54 Siegmund B, Schluter KD, Piper HM. Calcium and the oxygen paradox. Cardiovasc Res. 1993; 27: 1778–83.
- 55 Gateau-Roesch O, Argaud L, Ovize M. Mitochondrial permeability transition pore and postconditioning. Cardiovasc Res. 2006; 70: 264–73.
- 56 Stein AB, Tang XL, Guo Y, Xuan YT, Dawn B, Bolli R. Delayed adaptation of the heart to stress: late preconditioning. Stroke. 2004; 35: 2676–9.
- 57 Pagliaro P. Differential biological effects of products of nitric oxide (NO) synthase: it is not enough to say NO. Life Sci. 2003; 73: 2137–49.
- 58 Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukariotic cells. Free Radical Res Commun. 1992; 17: 221–37.
- 59 Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res. 1996; 32: 743–51.
- 60 Baldwin AS. The transcription factor NFkB and human disease. J Clin Invest. 2001; 107: 3–6.
- 61 Marczin N, El-Habashi N, Hoare GS, Bundy RE, Yacoub M. Antioxidant in myocardial ischemia-reperfusion injury: therapeutic potential and basic mechanisms. Arch Biochem Biophys. 2003; 420: 222–36.
- 62 Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987; 92: 181–7.
- 63 Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004; 61: 402–13.
- 64 Reffelmann T, Kloner RA. The “no-reflow” phenomenon: basic science and clinical correlates. Heart. 2002; 87: 162–8.
- 65 Dow J, Kloner RA. Postconditioning does not reduce myocardial infarct size in an in vivo regional ischemia rodent model. J Cardiovasc Pharmacol Ther. 2007; 12: 153–63.
- 66 Heusch G, Büchert A, Feldhaus S, Schulz R. No loss of cardioprotection by postconditioning in con-nexin 43-deficient mice. Basic Res Cardiol. 2006; 101: 354–6.
- 67 Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol. 2006; 290: H1011–8.
- 68 Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT. Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006; 101: 502–7.
- 69 Manintveld OC, Te Lintel Hekkert M, Van Den Bos EJ, Suurenbroek GM, Dekkers DH, Verdouw PD, Lamers JM, Duncker DJ. Cardiac effects of post-conditioning depend critically on the duration of index ischemia. Am J Physiol Heart Circ Physiol. 2007; 292: 1551–60.
- 70 Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovas Interv. 2005; 65: 361–7.
- 71 Staat P, Rioufol G, Piot C, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M. Postconditioning the human heart. Circulation. 2005; 112: 2143–8.
- 72 Pagliaro P, Rastaldo R, Penna C, Mancardi D, Cappello S, Losano G. Nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway is involved in ischemic postconditioning in the isolated rat heart. Circulation. 2004; 110: III 136.
- 73 Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P. Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol. 2006; 101: 168–79.
- 74 Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res. 2006; 70: 308–14.
- 75 Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signaling. Cardiovasc Res. 2006; 70: 315–24.
- 76 Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P. Post-conditioning induced cardioprotection requires sig-nalling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol. 2006; 101: 180–9.
- 77 Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao ZQ, Guyton RA, Headrick JP, Vinten-Johansen J. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005; 67: 124–33.
- 78 Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994; 94: 1621–8.
- 79 Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S, Schaper J. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000; 32: 197–208.
- 80 Reeve JL, Szegezdi E, Logue SE, Chonghaile TN, O’brien T, Ritter T, Samali A. Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-xL. J Cell Mol Med. 2007; 11: 509–20.
- 81 Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis. 2006; 11: 1583–93.
- 82 Heltianu C, Costache G, Gafencu A, Diaconu M, Bodeanu M, Cristea C, Azibi K, Poenaru L, Simionescu M. Relationship of eNOS gene variants to diseases that have in common an endothelial cell dysfunction. J Cell Mol Med. 2005; 9: 135–42.
- 83 Kumar S, Kasseckert S, Kostin S, Abdallah Y, Piper HM, Steinhoff G, Reusch HP, Ladilov Y. Importance of bicarbonate transport for ischaemiainduced apoptosis of coronary endothelial cells. J Cell Mol Med. 2007; 11: 798–809.
- 84 Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, Sun HY, Guyton RA, Vinten-Johansen J, Zhao ZQ. Myocardial protection with postcondition-ing is not enhanced by ischemic preconditioning. Ann Thorac Surg. 2004; 78: 961–9.
- 85 Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005; 288: H1900–8.
- 86 Couvreur N, Lucats L, Tissier R, Bize A, Berdeaux A, Ghaleh B. Differential effects of postconditioning on myocardial stunning and infarction: a study in conscious dogs and anesthetized rabbits. Am J Physiol Heart Circ Physiol. 2006; 291: H1345–50.
- 87 Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J. Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg. 2004; 25: 1006–10.
- 88 Grech ED, Ramsdale DR. Termination of reperfusion arrhythmia by coronary artery occlusion. Br Heart J. 1994; 72: 94–5.
- 89 Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther. 2006; 11: 55–63.
- 90 Vanagt WY, Cornelussen RN, Baynham TC, Van Hunnik A, Poulina QP, Babiker F, Spinelli J, Delhaas T, Prinzen FW. Pacing-induced dyssynchrony during early reperfusion reduces infarct size. J Am Coll Cardiol. 2007; 49: 1813–9.
- 91 Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005; 111: 194–7.
- 92 Sato H, Bolli R, Rokosh GD, Bi Q, Dai S, Shirk G, Tang XL. The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am J Physiol Heart Circ Physiol. 2007; 293: H2557–64.
- 93 Crisostomo PR, Wang M, Wairiuko GM, Terrell AM, Meldrum DR. Postconditioning in females depends on injury severity. J Surg Res. 2006; 134: 342–7.
- 94 Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res. 2008; 102: 131–5.
- 95 Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993; 87: 893–9.
- 96 Bolte CS, Liao S, Gross GJ, Schultz Jel J. Remote preconditioning-endocrine factors in organ protection against ischemic injury. Endocr Metab Immune Disord Drug Targets. 2007; 7: 167–75.
- 97 Li CM, Zhang XH, Ma XJ, Luo M. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand Cardiovasc J. 2006; 40: 312–7.
- 98 Loukogeorgakis SP, Williams R, Panagiotidou AT, Kolvekar SK, Donald A, Cole TJ, Yellon DM, Deanfield JE, MacAllister RJ. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)-channel dependent mechanism. Circulation. 2007; 116: 1386–95.
- 99 Tissier R, Waintraub X, Couvreur N, Gervais M, Bruneval P, Mandet C, Zini R, Enriquez B, Berdeaux A, Ghaleh B. Pharmacological postconditioning with the phytoestrogen genistein. J Mol Cell Cardiol. 2007; 42: 79–87.
- 100 Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007; 115: 1895–903.
- 101 Gomez L, Thibault HB, Gharib A, Dumont JM, Vuagniaux G, Scalfaro P, Derumeaux G, Ovize M. Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2007; 293: H1654–61.
- 102 Darling CE, Solari1 PB, Smith CS, Furman MI, Przyklenk K. Postconditioning the human heart: Multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol. 2007; 102: 274–8.
- 103 Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, Schaub MC, Zaugg M. Ischemic post-conditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006; 72: 152–62.
- 104 Peng LY, Ma H, He JG, Gao XR, Zhang Y, He XH, Zhai YS, Zhang XJ. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hyper-trophied rat heart. Zhonghua Xin Xue Guan Bing Za Zhi. 2006; 34: 685–9.
- 105 Reussner C, Kloting I, Strasser R, Weinbrenner C. Postconditioning fails to reduce the infarct sizes in hearts from rats with metabolic syndrome: role of glycogen synthase kinase 3beta. J Mol Cell Cardiol. 2006; 40: 970.
- 106 Hausenloy DJ, Wynne A, Mocanu M, Yellon DM. The metabolic syndrome raises the threshold for cardioprotection. J Mol Cell Cardiol. 2007; 42: S185 (abstract).
- 107 Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995; 307: 93–8.
- 108 Kin H, Zatta AJ, Jiang R, Reeves JG. Activation of opioid mediates the infarct size reduction by postconditioning. J Mol Cell Cardiol. 2005; 38: 827.
- 109 Cohen MV, Yang XM, Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovasc Res. 2006; 70: 231–9.
- 110 Dawn B, Bolli R. Role of nitric oxide in myocardial preconditioning. Ann N Y Acad Sci. 2002; 962: 18–41.
- 111 Sasaki N, Sato T, Ohler A, O’Rourke B, Marban E. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation. 2000; 101: 439–45.
- 112 Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002; 3: 214–20.
- 113 Oldenburg O, Cohen MV, Yellon DM, Downey JM. Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res. 2002; 55: 429–37.
- 114 Gattullo D, Linden RJ, Losano G, Pagliaro P, Westerhof N. Ischaemic preconditioning changes the pattern of coronary reactive hyperaemia in the goat: role of adenosine and nitric oxide. Cardiovasc Res. 1999; 42: 57–64.
- 115 Laude K, Beauchamp P, Thuillez C, Richard V. Endothelial protective effects of preconditioning. Cardiovasc Res. 2002; 55: 466–73.
- 116 Ridnour LA, Thomas DD, Mancardi D, Donzelli S, Paolocci N, Pagliaro P, Miranda KM, Krishna MC, Fukuto J, Grisham MB, Mitchell JB, Espey MG, Wink DA. Antioxidant properties of nitric oxide in cellular physiological and pathophysiological mechanisms. The implications of biological balance between NO and oxidative stress. Current Medicinal Chemistry – Anti-Inflammatory & Anti-Allergy Agents. 2004; 3: 181–8.
- 117 Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem. 2004; 385: 1–10.
- 118 Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N. Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med. 2003; 34: 33–43.
- 119 Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci USA. 1999; 96: 14617–22.
- 120 Patel VC, Yellon DM, Singh KJ, Neild GH, Woolfson RG. Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun. 1993; 194: 234–8.
- 121 Woolfson RG, Patel VC, Neild GH, Yellon DM. Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation. 1995; 91: 1545–51.
- 122 Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001; 33: 1897–918.
- 123 Wink DA, Miranda KM, Katori T, Mancardi D, Thomas DD, Ridnour L, Espey MG, Feelisch M, Colton CA, Fukuto JM, Pagliaro P, Kass DA, Paolocci N. Orthogonal properties of the redox siblings nitroxyl and nitric oxide in the cardiovascular system: a novel redox paradigm. Am J Physiol Heart Circ Physiol. 2003; 285: H2264–76.
- 124 Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004; 61: 402–13.
- 125 Downey JM, Cohen MV. A really radical observation–a comment on Penna et al. in Basic Res Cardiol (2006) 101: 180–189. Basic Res Cardiol. 2006; 101: 190–1.
- 126 Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007; 81: 1223–7.
- 127 Fujita M, Asanuma H, Hirata A, Wakeno M, Takahama H, Sasaki H, Kim J, Takashima S, Tsukamoto O, Minamino T, Shinozaki Y, Tomoike H, Hori M, Kitakaze M. Prolonged transient acidosis during early reperfusion contributes to the cardiopro-tective effects of postconditioning. Am J Physiol Heart Circ Physiol. 2007; 292: 2004–8.
- 128 Hausenloy DJ, Wynne AM, Yellon DM. Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol. 2007; 102: 445–52.
- 129 Cao Z, Liu L, Van Winkle DM. Met5-enkephalin-induced cardioprotection occurs via transactivation of EGFR and activation of PI3K. Am J Physiol Heart Circ Physiol. 2005; 288: 1955–64.
- 130 Kostin S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med. 2007; 11: 892–5.
- 131 Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003; 93: 292–301.
- 132 Murata M, Akao M, O’Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001; 89: 891–8.
- 133 Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovas Res. 2006; 69: 178–85.
- 134 Tritto I, D’Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A, Esposito A, Chiariello M, Ambrosio G. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res. 1997; 80: 743–8.
- 135 Ambrosio G, Tritto I, Chiariello M. The role of oxygen free radicals in preconditioning. J Mol Cell Cardiol. 1995; 27: 1035–9.
- 136 Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001; 88: 802–9.
- 137 Yue Y, Qin Q, Cohen MV, Downey JM, Critz SD. The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning's protective pathway in rat heart. Cardiovasc Res. 2002; 55: 681–9.
- 138 Oldenburg O, Qin Q, Sharma AR, Cohen MV, Downey JM, Benoit JN. Acetylcholine leads to free radical production dependent on K(ATP) channels, G(i) proteins, phosphatidylinositol 3-kinase and tyro-sine kinase. Cardiovasc Res. 2002; 55: 544–52.
- 139 Yao Z, Tong J, Tan X, Li C, Shao Z, Kim WC, Vanden Hoek TL, Becker LB, Head CA, Schumacker PT. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am J Physiol Heart Circ Physiol. 1999; 277: H2504–9.
- 140 Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000; 192: 1001–14.
- 141 Tanaka K, Weihrauch D, Ludwig LM, Kersten JR, Pagel PS, Warltier DC. Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species. Anesthesiology. 2003; 98: 935–43.
- 142 Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003; 284: H299–308.
- 143 Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004; 113: 1535–49.
- 144 Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD, Cohen MV, Downey JM. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol. 2004; 286: H468–76.
- 145 Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenyle-phrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ Res. 2001; 89: 273–8.
- 146 Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004; 61: 461–70.
- 147 Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997; 29: 207–16.
- 148 Urschel WC. Cardiovascular effects of hydrogen peroxide: current status. Dis Chest. 1967; 51: 180–92.
- 149 Urschel HC, Morales AR, Finney JW, Balla GA, Race GJ, Mallams JT. Cardiac resuscitation with hydrogen peroxide. Ann Thor Surg. 1966; 2: 665–82.
- 150 Takahashi M, Horiguchi Y, Murakami K. Effects of epicardial perfusion with hydrogen peroxide for ischemic myocardium. Jpn Heart J. 1969; 10: 53–8.
- 151 Olson RD, Boerth RC. Hydrogen peroxide: beneficial effects in rabbits following acute coronary occlusion. Am J Physiol Heart Circ Physiol. 1978; 234: H28–34.
- 152 Goodlett M, Dowling K, Downey JM. The failure of hydrogen peroxide to improve function in ischemically depressed myccardium. Eur J Pharmacol. 1979; 60: 257–60.
- 153 Ytrehus K, Walsh RS, Richards SC, Downey JM. Hydrogen peroxide as a protective agent during reperfusion. A study in the isolated perfused rabbit heart subjected to regional ischemia. Cardiovasc Res. 1995; 30: 1033–7.
- 154 Wölkart G, Kaber G, Kojda G, Brunner F. Role of endogenous hydrogen peroxide in cardiovascular ischaemia/reperfusion function: studies in mouse hearts with catalase-overexpression in the vascular endothelium. Pharmacol Res. 2006; 54: 50–6.
- 155 Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR, George BS, Kereiakes DJ, Deitchman D, Gustafson N. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation. 1999; 89: 1982–91.
- 156 Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000; 342: 154–60.
- 157 Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning and their clinical implications. Circulation. 2001; 104: 2981–9.
- 158 Estevez AG, Jordan J. Nitric oxide and superoxide, a deadly cocktail. Ann NY Acad Sci. 2002; 962: 207–11.