Mycobacterium tuberculosis: success through dormancy
Martin Gengenbacher
Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
Search for more papers by this authorCorresponding Author
Stefan H.E. Kaufmann
Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
Correspondence: Stefan H.E. Kaufmann, Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany. Tel.: +49 30 28460 500; fax: +49 30 28460 501; e-mail: [email protected] or [email protected]Search for more papers by this authorMartin Gengenbacher
Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
Search for more papers by this authorCorresponding Author
Stefan H.E. Kaufmann
Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
Correspondence: Stefan H.E. Kaufmann, Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany. Tel.: +49 30 28460 500; fax: +49 30 28460 501; e-mail: [email protected] or [email protected]Search for more papers by this authorAbstract
Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host–pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
References
- Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R & Andersen P (2011) A multistage tuberculosis vaccine that confers efficient protection pre- and post-exposure. Nat Med 17: 189–194.
- Abramovitch RB, Rohde KH, Hsu FF & Russell DG (2011) aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol 80: 678–694.
- Aderem A & Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17: 593–623.
- Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M & Fortune SM (2011) Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335: 100–104.
- Alonso S, Pethe K, Russell DG & Purdy GE (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. P Natl Acad Sci USA 104: 6031–6036.
- Amigorena S, Drake JR, Webster P & Mellman I (1994) Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature 369: 113–120.
- Armstrong JA & Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142: 1–16.
- Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SH, Haas A & Schaible UE (2008) Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol 10: 1530–1545.
- Barry CE III, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ & Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7: 845–855.
- Beckman JS, Beckman TW, Chen J, Marshall PA & Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. P Natl Acad Sci USA 87: 1620–1624.
- Bedard K & Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245–313.
- Behar SM, Divangahi M & Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8: 668–674.
- Beste DJ, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, Noh K, Kruger NJ, Ratcliffe RG & McFadden J (2011) (1)(3)C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7: e1002091.
- Betts JC, Lukey PT, Robb LC, McAdam RA & Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43: 717–731.
- Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2: 907–916.
- Boon C & Dick T (2002) Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184: 6760–6767.
- Botella H, Peyron P, Levillain F et al. (2011) Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10: 248–259.
- Braunstein M, Espinosa BJ, Chan J, Belisle JT & Jacobs WR Jr (2003) SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48: 453–464.
- Brennan PJ & Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63.
- Bryk R, Gold B, Venugopal A et al. (2008) Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3: 137–145.
- Brzostek A, Dziadek B, Rumijowska-Galewicz A, Pawelczyk J & Dziadek J (2007) Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett 275: 106–112.
- Buchmeier N, Blanc-Potard A, Ehrt S, Piddington D, Riley L & Groisman EA (2000) A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol Microbiol 35: 1375–1382.
- Cambi A, Koopman M & Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7: 481–488.
- Cardona PJ (2009) A dynamic reinfection hypothesis of latent tuberculosis infection. Infection 37: 80–86.
- Chang JC, Miner MD, Pandey AK, Gill WP, Harik NS, Sassetti CM & Sherman DR (2009) igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191: 5232–5239.
- Chao MC & Rubin EJ (2010) Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64: 293–311.
- Cohen-Gonsaud M, Barthe P, Bagneris C, Henderson B, Ward J, Roumestand C & Keep NH (2005) The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes. Nat Struct Mol Biol 12: 270–273.
- Cole ST, Brosch R, Parkhill J et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (vol 393, pg 537, 1998). Nature 396: 190–198.
- Converse PJ, Karakousis PC, Klinkenberg LG et al. (2009) Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect Immun 77: 1230–1237.
- Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG & Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178: 2243–2247.
- Daniel J, Maamar H, Deb C, Sirakova TD & Kolattukudy PE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7: e1002093.
- Darwin KH (2009) Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol 7: 485–491.
- Deretic V (2010) Autophagy in infection. Curr Opin Cell Biol 22: 252–262.
- Deretic V, Delgado M, Vergne I, Master S, De HS, Ponpuak M & Singh S (2009) Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol 335: 169–188.
- Desjardins M (2009) The good fat: a link between lipid bodies and antigen cross-presentation. Immunity 31: 176–178.
- Dittrich D, Keller C, Ehlers S, Schultz JE & Sander P (2006) Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264. Int J Med Microbiol 296: 563–566.
- Drumm JE, Mi K, Bilder P et al. (2009) Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection. PLoS Pathog 5: e1000460.
- Dussurget O, Stewart G, Neyrolles O, Pescher P, Young D & Marchal G (2001) Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect Immun 69: 529–533.
- Dye C & Williams BG (2010) The population dynamics and control of tuberculosis. Science 328: 856–861.
- Dye C, Scheele S, Dolin P, Pathania V & Raviglione MC (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282: 677–686.
- Edwards KM, Cynamon MH, Voladri RK, Hager CC, DeStefano MS, Tham KT, Lakey DL, Bochan MR & Kernodle DS (2001) Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 164: 2213–2219.
- Ehrt S & Schnappinger D (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: 1170–1178.
- Epstein SS (2009) Microbial awakenings. Nature 457: 1083.
- Ernst JD (1998) Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66: 1277–1281.
- Etlinger JD & Goldberg AL (1977) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. P Natl Acad Sci USA 74: 54–58.
- Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2: 820–832.
- Fisher MA, Plikaytis BB & Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184: 4025–4032.
- Fox W, Ellard GA & Mitchison DA (1999) Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 3: S231–S279.
- Gandotra S, Schnappinger D, Monteleone M, Hillen W & Ehrt S (2007) In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13: 1515–1520.
- Gengenbacher M, Rao SP, Pethe K & Dick T (2010) Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156: 81–87.
- Giebel JD, Carr KA, Anderson EC & Hanna PC (2009) The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence. J Bacteriol 191: 5569–5576.
- Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE & Sherman DR (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15: 211–214.
- Glickman MS, Cox JS & Jacobs WR (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5: 717–727.
- Greenberg S (1999) Fc receptor-mediated phagocytosis. Phagocytosis and the Host ( S Gordon, ed), pp. 149–191. JAI Press, Stamford, CT.
10.1016/S1874-5172(99)80031-5 Google Scholar
- Grode L, Seiler P, Baumann S et al. (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guérin mutants that secrete listeriolysin. J Clin Invest 115: 2472–2479.
- Gruenberg J & Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5: 317–323.
- Haase H & Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29: 133–152.
- Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, Bishai WR, Pomper MG, Nuermberger EL & Jain SK (2012) Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 205: 595–602.
- Huynh KK & Grinstein S (2007) Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 71: 452–462.
- Jackson M, Stadthagen G & Gicquel B (2007) Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb) 87: 78–86.
- Kana BD, Gordhan BG, Downing KJ et al. (2008) The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67: 672–684.
- Katti MK, Dai G, Armitige LY, Rivera MC, Daniel S, Singh CR, Lindsey DR, Dhandayuthapani S, Hunter RL & Jagannath C (2008) The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 10: 1286–1303.
- Kaufmann SHE (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1: 20–30.
- Kaufmann SH (2010) Future vaccination strategies against tuberculosis: thinking outside the box. Immunity 33: 567–577.
- Kaufmann SH (2011a) Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis 11: 633–640.
- Kaufmann SH (2011b) Tuberculosis vaccines – a new kid on the block. Nat Med 17: 159–160.
- Kaufmann SHE & Winau F (2005) From bacteriology to immunology: the dualism of specificity. Nat Immunol 6: 1063–1066.
- Kaufmann SHE, Hussey G & Lambert PH (2010) New vaccines for tuberculosis. Lancet 375: 85–94.
- Keren I, Shah D, Spoering A, Kaldalu N & Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186: 8172–8180.
- Keren I, Minami S, Rubin E & Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2: 1–10.
- Koch R (1882) Die Aetiologie der Tuberculose (Nach einem in der physiologischen Gesellschaft zu Berlin am 24.März gehaltenem Vortrage). Berliner klin Wochenschr 19: 221–230.
- Koch R (1932) The Aetiology of Tuberculosis (Transl: Pinner B & Pinner M). National Tuberculosis Association, New York.
- Koul A, Arnoult E, Lounis N, Guillemont J & Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469: 483–490.
- Kumar A, Toledo JC, Patel RP, Lancaster JR Jr & Steyn AJ (2007) Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. P Natl Acad Sci USA 104: 11568–11573.
- Kurtz S, McKinnon KP, Runge MS, Ting JP & Braunstein M (2006) The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect Immun 74: 6855–6864.
- Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K & Voskuil MI (2010) The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192: 1662–1670.
- Leong FJ, Dartois V & Dick T, eds (2011) A Color Atlas of Comparative Pathology of Pulmonary Tuberculosis. CRC Press, Boca Raton, FL.
- Levine B, Mizushima N & Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469: 323–335.
- Lewis K (2010) Persister cells. Annu Rev Microbiol 64: 357–372.
- Liu PT & Modlin RL (2008) Human macrophage host defense against Mycobacterium tuberculosis. Curr Opin Immunol 20: 371–376.
- Liu PT, Stenger S, Tang DH & Modlin RL (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179: 2060–2063.
- Loebel RO, Shorr E & Richardson HB (1933) The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26: 167–200.
- Low KL, Rao PS, Shui G, Bendt AK, Pethe K, Dick T & Wenk MR (2009) Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin. J Bacteriol 191: 5037–5043.
- Lowe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: 533–539.
- Lowe DM, Redford PS, Wilkinson RJ, O'Garra A & Martineau AR (2011) Neutrophils in tuberculosis: friend or foe? Trends Immunol 33: 14–25.
- Ma Z, Lienhardt C, McIlleron H, Nunn AJ & Wang X (2010) Global tuberculosis drug development pipeline: the need and the reality. Lancet 375: 75–84.
- MacGurn JA & Cox JS (2007) A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun 75: 2668–2678.
- MacMicking JD, Taylor GA & McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302: 654–659.
- Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S & Niederweis M (2004) The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 150: 853–864.
- Makinoshima H & Glickman MS (2005) Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436: 406–409.
- Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D & Madiraju MV (2009) The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog 5: e1000534.
- Marrero J, Rhee KY, Schnappinger D, Pethe K & Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. P Natl Acad Sci USA 107: 9819–9824.
- McCune RM, Feldmann FM, Lambert HP & McDermott W (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 123: 445–468.
- McKinney JD, zu Bentrup KH, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR & Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.
- Metchnikoff E (1905) Immunity in Infective Disease. Cambridge University Press, Cambridge.
- Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L & Eltis LD (2008) The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283: 35368–35374.
- Movahedzadeh F, Smith DA, Norman RA et al. (2004) The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol Microbiol 51: 1003–1014.
- Mukamolova GV, Turapov O, Malkin J, Woltmann G & Barer MR (2010) Resuscitation-promoting factors reveal an occult population of tubercle Bacilli in Sputum. Am J Respir Crit Care Med 181: 174–180.
- Munoz-Elias EJ, Upton AM, Cherian J & McKinney JD (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60: 1109–1122.
- Nathan CF & Ehrt S (2004) Nitric oxide in tuberculosis. Tuberculosis ( W Rom & S Garay, eds), pp. 215–235. Lippincott, Williams & Wilkins, Philadelphia, PA.
- Nathan C & Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. P Natl Acad Sci USA 97: 8841–8848.
- Nathan C, Gold B, Lin G, Stegman M, de Carvalho LP, Vandal O, Venugopal A & Bryk R (2008) A philosophy of anti-infectives as a guide in the search for new drugs for tuberculosis. Tuberculosis (Edinb) 88(suppl 1): S25–S33.
- Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS & Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78: 275–282.
- Ng VH, Cox JS, Sousa AO, MacMicking JD & McKinney JD (2004) Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52: 1291–1302.
- North RJ & Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22: 599–623.
- Ohno H, Zhu G, Mohan VP, Chu D, Kohno S, Jacobs WR Jr & Chan J (2003) The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cell Microbiol 5: 637–648.
- Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR & Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434: 767–772.
- Pandey AK & Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. P Natl Acad Sci USA 105: 4376–4380.
- Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK & Sherman DR (2003) Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48: 833–843.
- Payne DJ, Gwynn MN, Holmes DJ & Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6: 29–40.
- Pearce MJ, Mintseris J, Ferreyra J, Gygi SP & Darwin KH (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322: 1104–1107.
- Peschel A & Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4: 529–536.
- Pethe K, Swenson DL, Alonso S, Anderson J, Wang C & Russell DG (2004) Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. P Natl Acad Sci USA 101: 13642–13647.
- Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM & Buchmeier NA (2001) Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69: 4980–4987.
- Pieters J (1997) MHC class II restricted antigen presentation. Curr Opin Immunol 9: 89–96.
- Purdy GE & Russell DG (2007) Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cell Microbiol 9: 2768–2774.
- Purdy GE, Niederweis M & Russell DG (2009) Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 73: 844–857.
- Rao SP, Alonso S, Rand L, Dick T & Pethe K (2008) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. P Natl Acad Sci USA 105: 11945–11950.
- Raynaud C, Papavinasasundaram KG, Speight RA, Springer B, Sander P, Bottger EC, Colston MJ & Draper P (2002) The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol Microbiol 46: 191–201.
- Reddy TB, Riley R, Wymore F et al. (2009) TB database: an integrated platform for tuberculosis research. Nucleic Acids Res 37: D499–D508.
- Reece ST & Kaufmann SHE (2011) Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? Curr Opin Microbiol 15: 63–70.
- Reece ST, Loddenkemper C, Askew DJ et al. (2010) Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice. J Clin Invest 120: 3365–3376.
- Reyrat JM, Berthet FX & Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. P Natl Acad Sci USA 92: 8768–8772.
- Rifat D, Bishai WR & Karakousis PC (2009) Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis 200: 1126–1135.
- Rigel NW & Braunstein M (2008) A new twist on an old pathway–accessory Sec [corrected] systems. Mol Microbiol 69: 291–302.
- Rink L & Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59: 541–552.
- Robinson N, Wolke M, Ernestus K & Plum G (2007) A mycobacterial gene involved in synthesis of an outer cell envelope lipid is a key factor in prevention of phagosome maturation. Infect Immun 75: 581–591.
- Rohde KH, Abramovitch RB & Russell DG (2007) Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2: 352–364.
- Rothman JE & Wieland FT (1996) Protein sorting by transport vesicles. Science 272: 227–234.
- Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2: 569–577.
- Russell DG, Vanderven BC, Glennie S, Mwandumba H & Heyderman RS (2009) The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9: 594–600.
- Rustad TR, Sherrid AM, Minch KJ & Sherman DR (2009) Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol 11: 1151–1159.
- Sassetti CM & Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. P Natl Acad Sci USA 100: 12989–12994.
- Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V & Dawes SS (2008) Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190: 3886–3895.
- Schaible UE, Sturgill-Koszycki S, Schlesinger PH & Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160: 1290–1296.
- Schekman RW (1994) Regulation of membrane traffic in the secretory pathway. Harvey Lect 90: 41–57.
- Schnappinger D, Ehrt S, Voskuil MI et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693–704.
- Senaratne RH, De Silva AD, Williams SJ et al. (2006) 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 59: 1744–1753.
- Shah IM, Laaberki MH, Popham DL & Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135: 486–496.
- Shi S & Ehrt S (2006) Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 74: 56–63.
- Shleeva MO, Bagramyan K, Telkov MV, Mukamolova GV, Young M, Kell DB & Kaprelyants AS (2002) Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148: 1581–1591.
- Smith NH, Hewinson RG, Kremer K, Brosch R & Gordon SV (2009) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7: 537–544.
- Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS & Lafuse WP (2007) Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 82: 934–945.
- Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A & Weber-Ban E (2009) Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16: 647–651.
- Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J & Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678–681.
- Sturgill-Koszycki S, Schaible UE & Russell DG (1996) Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 15: 6960–6968.
- Sutter M, Striebel F, Damberger FF, Allain FH & Weber-Ban E (2009) A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett 583: 3151–3157.
- Tailleux L, Waddell SJ, Pelizzola M et al. (2008) Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS ONE 3: e1403.
- Teh JS, Yano T & Rubin H (2007) Type II NADH: menaquinone oxidoreductase of Mycobacterium tuberculosis. Infect Disord Drug Targets 7: 169–181.
- Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE & Linder JU (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308: 1020–1023.
- Tulp A, Verwoerd D, Dobberstein B, Ploegh HL & Pieters J (1994) Isolation and characterization of the intracellular MHC class II compartment. Nature 369: 120–126.
- van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M & Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129: 1287–1298.
- Vandal OH, Pierini LM, Schnappinger D, Nathan CF & Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14: 849–854.
- Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF & Ehrt S (2009) Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 191: 625–631.
- Vazquez-Laslop N, Lee H & Neyfakh AA (2006) Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J Bacteriol 188: 3494–3497.
- Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, Ziazarifi AH & Hoffner SE (2009) Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136: 420–425.
- Vergne I, Chua J & Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2 +/Calmodulin-PI3K hVPS34 cascade. J Exp Med 198: 653–659.
- Vergne I, Chua J, Lee HH, Lucas M, Belisle J & Deretic V (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. P Natl Acad Sci USA 102: 4033–4038.
- Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D & Deretic V (1998) Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111(Pt 7): 897–905.
- Via LE, Lin PL, Ray SM et al. (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76: 2333–2340.
- Vilcheze C, Av-Gay Y, Attarian R et al. (2008) Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69: 1316–1329.
- Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G & Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304: 1800–1804.
- Wang T, Li H, Lin G, Tang C, Li D, Nathan C, Darwin KH & Li H (2009) Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17: 1377–1385.
- Wayne LG & Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64: 2062–2069.
- West MA, Lucocq JM & Watts C (1994) Antigen processing and class II MHC peptide-loading compartments in human B-lymphoblastoid cells. Nature 369: 147–151.
- Wolf PR & Ploegh HL (1995) How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu Rev Cell Dev Biol 11: 267–306.
- Wu X, Yang Y, Han Y, Zhang J, Liang Y, Li H, Li B & Wang L (2008) Effect of recombinant Rv1009 protein on promoting the growth of Mycobacterium tuberculosis. J Appl Microbiol 105: 1121–1127.
- Xie Z, Siddiqi N & Rubin EJ (2005) Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49: 4778–4780.
- Yang X, Nesbitt NM, Dubnau E, Smith I & Sampson NS (2009) Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48: 3819–3821.
- Yano T, Li LS, Weinstein E, Teh JS & Rubin H (2006) Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J Biol Chem 281: 11456–11463.
- Yates RM, Hermetter A & Russell DG (2005) The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6: 413–420.
10.1111/j.1600-0854.2005.00284.x Google Scholar
- Yew WW & Leung CC (2008) Update in tuberculosis 2007. Am J Respir Crit Care Med 177: 479–485.
- Zhang Y & Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7: 6–21.