Mechanisms of Toxoplasma gondii persistence and latency
Corresponding Author
William J. Sullivan Jr
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
Correspondence: William J. Sullivan Jr, Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, MS A-525, Indianapolis, IN 46202, USA. Tel./fax: 317 274 1573/7714; e-mail: [email protected]Search for more papers by this authorVictoria Jeffers
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
Search for more papers by this authorCorresponding Author
William J. Sullivan Jr
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
Correspondence: William J. Sullivan Jr, Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, MS A-525, Indianapolis, IN 46202, USA. Tel./fax: 317 274 1573/7714; e-mail: [email protected]Search for more papers by this authorVictoria Jeffers
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
Search for more papers by this authorAbstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes opportunistic disease, particularly in immunocompromised individuals. Central to its transmission and pathogenesis is the ability of the proliferative stage (tachyzoite) to convert into latent tissue cysts (bradyzoites). Encystment allows Toxoplasma to persist in the host and affords the parasite a unique opportunity to spread to new hosts without proceeding through its sexual stage, which is restricted to felids. Bradyzoite tissue cysts can cause reactivated toxoplasmosis if host immunity becomes impaired. A greater understanding of the molecular mechanisms orchestrating bradyzoite development is needed to better manage the disease. Here, we will review key studies that have contributed to our knowledge about this persistent form of the parasite and how to study it, with a focus on how cellular stress can signal for the reprogramming of gene expression needed during bradyzoite development.
References
- Al-Anouti F, Tomavo S, Parmley S & Ananvoranich S (2004) The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. J Biol Chem 279: 52300–52311.
- Anderson MZ, Brewer J, Singh U & Boothroyd JC (2009) A pseudouridine synthase homologue is critical to cellular differentiation in Toxoplasma gondii. Eukaryot Cell 8: 398–409.
- Barragan A & Sibley LD (2002) Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 195: 1625–1633.
- Behnke MS, Radke JB, Smith AT, Sullivan Jr WJ & White MW (2008) The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol Microbiol 68: 1502–1518.
- Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, Nawas J, Sibley LD & White MW (2010) Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS ONE 5: e12354.
- Bohne W & Roos DS (1997) Stage-specific expression of a selectable marker in Toxoplasma gondii permits selective inhibition of either tachyzoites or bradyzoites. Mol Biochem Parasitol 88: 115–126.
10.1016/S0166-6851(97)00087-X Google Scholar
- Bohne W, Heesemann J & Gross U (1993) Induction of bradyzoite-specific Toxoplasma gondii antigens in gamma interferon-treated mouse macrophages. Infect Immun 61: 1141–1145.
- Bohne W, Heesemann J & Gross U (1994) Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infect Immun 62: 1761–1767.
- Bohne W, Gross U, Ferguson DJ & Heesemann J (1995) Cloning and characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol 16: 1221–1230.
- Bohne W, Hunter CA, White MW, Ferguson DJ, Gross U & Roos DS (1998) Targeted disruption of the bradyzoite-specific gene BAG1 does not prevent tissue cyst formation in Toxoplasma gondii. Mol Biochem Parasitol 92: 291–301.
- Boothroyd JC, Black M, Bonnefoy S et al. (1997) Genetic and biochemical analysis of development in Toxoplasma gondii. Philos Trans R Soc Lond B Biol Sci 352: 1347–1354.
- Bougdour A, Maubon D, Baldacci P et al. (2009) Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med 206: 953–966.
- Bougdour A, Braun L, Cannella D & Hakimi MA (2010) Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cell Microbiol 12: 413–423.
- Boyce M, Bryant KF, Jousse C et al. (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307: 935–939.
- Brown CR, Hunter CA, Estes RG et al. (1995) Definitive identification of a gene that confers resistance against Toxoplasma cyst burden and encephalitis. Immunology 85: 419–428.
- Brumlik MJ, Wei S, Finstad K et al. (2004) Identification of a novel mitogen-activated protein kinase in Toxoplasma gondii. Int J Parasitol 34: 1245–1254.
- Butcher BA, Greene RI, Henry SC et al. (2005) p47 GTPases regulate Toxoplasma gondii survival in activated macrophages. Infect Immun 73: 3278–3286.
- Cleary MD, Singh U, Blader IJ, Brewer JL & Boothroyd JC (2002) Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell 1: 329–340.
- Craver MP, Rooney PJ & Knoll LJ (2010) Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation. Mol Biochem Parasitol 169: 120–123.
- Dalmasso MC, Onyango DO, Naguleswaran A, Sullivan Jr WJ & Angel SO (2009) Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. J Mol Biol 392: 33–47.
- Daubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS & Schroten H (2001) Restriction of Toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2,3-dioxygenase. Infect Immun 69: 6527–6531.
- Denton H, Roberts CW, Alexander J, Thong KW & Coombs GH (1996) Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiol Lett 137: 103–108.
- Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R & Crisanti A (2008) Temporal and spatial distribution of Toxoplasma gondii differentiation into Bradyzoites and tissue cyst formation in vivo. Infect Immun 76: 3491–3501.
- Dixon SE, Stilger KL, Elias EV, Naguleswaran A & Sullivan Jr WJ (2010) A decade of epigenetic research in Toxoplasma gondii. Mol Biochem Parasitol 173: 1–9.
- Djurkovic-Djakovic O & Milenkovic V (2001) Murine model of drug-induced reactivation of Toxoplasma gondii. Acta Protozool 40: 99–106.
- Djurkovic-Djakovic O, Nikolic A, Bobic B, Klun I & Aleksic A (2005) Stage conversion of Toxoplasma gondii RH parasites in mice by treatment with atovaquone and pyrrolidine dithiocarbamate. Microbes Infect 7: 49–54.
10.1016/j.micinf.2004.09.016 Google Scholar
- Donald RG, Allocco J, Singh SB, Nare B, Salowe SP, Wiltsie J & Liberator PA (2002) Toxoplasma gondii cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase. Eukaryot Cell 1: 317–328.
- Dubey JP & Jones JL (2008) Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 38: 1257–1278.
- Dubey JP, Lindsay DS & Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11: 267–299.
- Dunay IR, Chan WC, Haynes RK & Sibley LD (2009) Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob Agents Chemother 53: 4450–4456.
- Dzierszinski F, Popescu O, Toursel C, Slomianny C, Yahiaoui B & Tomavo S (1999) The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans. J Biol Chem 274: 24888–24895.
- Dzierszinski F, Mortuaire M, Dendouga N, Popescu O & Tomavo S (2001) Differential expression of two plant-like enolases with distinct enzymatic and antigenic properties during stage conversion of the protozoan parasite Toxoplasma gondii. J Mol Biol 309: 1017–1027.
- Dzierszinski F, Nishi M, Ouko L & Roos DS (2004) Dynamics of Toxoplasma gondii differentiation. Eukaryot Cell 3: 992–1003.
- Eaton MS, Weiss LM & Kim K (2006) Cyclic nucleotide kinases and tachyzoite–bradyzoite transition in Toxoplasma gondii. Int J Parasitol 36: 107–114.
- Echeverria PC, Matrajt M, Harb OS et al. (2005) Toxoplasma gondii Hsp90 is a potential drug target whose expression and subcellular localization are developmentally regulated. J Mol Biol 350: 723–734.
- Echeverria PC, Figueras MJ, Vogler M et al. (2010) The Hsp90 co-chaperone p23 of Toxoplasma gondii: identification, functional analysis and dynamic interactome determination. Mol Biochem Parasitol 172: 129–140.
- Elsheikha HM & Khan NA (2010) Protozoa traversal of the blood-brain barrier to invade the central nervous system. FEMS Microbiol Rev 34: 532–553.
- Fekadu A, Shibre T & Cleare AJ (2010) Toxoplasmosis as a cause for behaviour disorders – overview of evidence and mechanisms. Folia Parasitol (Praha) 57: 105–113.
- Fentress SJ, Behnke MS, Dunay IR et al. (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8: 484–495.
- Feo S, Arcuri D, Piddini E, Passantino R & Giallongo A (2000) ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett 473: 47–52.
- Ferguson DJ (2004) Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. Int J Parasitol 34: 347–360.
- Ferguson DJ & Hutchison WM (1987) An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res 73: 483–491.
- Ferguson DJ, Hutchison WM & Pettersen E (1989) Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study. Parasitol Res 75: 599–603.
- Ferguson DJ, Parmley SF & Tomavo S (2002) Evidence for nuclear localisation of two stage-specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. Int J Parasitol 32: 1399–1410.
- Ferreira da Silva MD, Barbosa HS, Gross U & Luder CG (2008) Stress-related and spontaneous stage differentiation of Toxoplasma gondii. Mol Biosyst 4: 824–834.
- Fox BA, Gigley JP & Bzik DJ (2004) Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. Int J Parasitol 34: 323–331.
- Fox BA, Ristuccia JG, Gigley JP & Bzik DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8: 520–529.
- Fox BA, Falla A, Rommereim LM et al. (2011) Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. Eukaryot Cell 10: 1193–1206.
- Fux B, Nawas J, Khan A, Gill DB, Su C & Sibley LD (2007) Toxoplasma gondii strains defective in oral transmission are also defective in developmental stage differentiation. Infect Immun 75: 2580–2590.
- Gastens MH & Fischer HG (2002) Toxoplasma gondii eukaryotic translation initiation factor 4A associated with tachyzoite virulence is down-regulated in the bradyzoite stage. Int J Parasitol 32: 1225–1234.
- Gazzinelli RT, Hakim FT, Hieny S, Shearer GM & Sher A (1991) Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 146: 286–292.
- Gazzinelli R, Xu Y, Hieny S, Cheever A & Sher A (1992) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149: 175–180.
- Gubbels MJ, White M & Szatanek T (2008) The cell cycle and Toxoplasma gondii cell division: tightly knit or loosely stitched? Int J Parasitol 38: 1343–1358.
- Holpert M, Gross U & Bohne W (2006) Disruption of the bradyzoite-specific P-type (H+)-ATPase PMA1 in Toxoplasma gondii leads to decreased bradyzoite differentiation after stress stimuli but does not interfere with mature tissue cyst formation. Mol Biochem Parasitol 146: 129–133.
- Howe DK & Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172: 1561–1566.
- Howe DK, Honore S, Derouin F & Sibley LD (1997) Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis. J Clin Microbiol 35: 1411–1414.
- Huynh MH & Carruthers VB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8: 530–539.
- Jacobs L, Remington JS & Melton ML (1960) The resistance of the encysted form of Toxoplasma gondii. J Parasitol 46: 11–21.
- Jerome ME, Radke JR, Bohne W, Roos DS & White MW (1998) Toxoplasma gondii bradyzoites form spontaneously during sporozoite-initiated development. Infect Immun 66: 4838–4844.
- Jones TC, Bienz KA & Erb P (1986) In vitro cultivation of Toxoplasma gondii cysts in astrocytes in the presence of gamma interferon. Infect Immun 51: 147–156.
- Jones J, Lopez A & Wilson M (2003) Congenital toxoplasmosis. Am Fam Physician 67: 2131–2138.
- Joyce BR, Queener SF, Wek RC & Sullivan Jr WJ (2010) Phosphorylation of eukaryotic initiation factor-2{alpha} promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii. P Natl Acad Sci USA 107: 17200–17205.
- Kasper LH, Khan IA, Ely KH, Buelow R & Boothroyd JC (1992) Antigen-specific (p30) mouse CD8+ T cells are cytotoxic against Toxoplasma gondii-infected peritoneal macrophages. J Immunol 148: 1493–1498.
- Khan A, Behnke MS, Dunay IR, White MW & Sibley LD (2009) Phenotypic and gene expression changes among clonal type I strains of Toxoplasma gondii. Eukaryot Cell 8: 1828–1836.
- Kim SK, Karasov A & Boothroyd JC (2007) Bradyzoite-specific surface antigen SRS9 plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control of parasite replication in the intestine. Infect Immun 75: 1626–1634.
- Kirkman LA, Weiss LM & Kim K (2001) Cyclic nucleotide signaling in Toxoplasma gondii bradyzoite differentiation. Infect Immun 69: 148–153.
- Lacey MR, Brumlik MJ, Yenni RE, Burow ME & Curiel TJ (2007) Toxoplasma gondii expresses two mitogen-activated protein kinase genes that represent distinct protozoan subfamilies. J Mol Evol 64: 4–14.
- Lambert H, Vutova PP, Adams WC, Lore K & Barragan A (2009) The Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect Immun 77: 1679–1688.
- Lane A, Soete M, Dubremetz JF & Smith JE (1996) Toxoplasma gondii: appearance of specific markers during the development of tissue cysts in vitro. Parasitol Res 82: 340–346.
- Lescault PJ, Thompson AB, Patil V et al. (2010) Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state. PLoS ONE 5: e14463.
- Luder CG, Giraldo-Velasquez M, Sendtner M & Gross U (1999) Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Exp Parasitol 93: 23–32.
- Luft BJ, Brooks RG, Conley FK, McCabe RE & Remington JS (1984) Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. JAMA 252: 913–917.
- Mack DG, Johnson JJ, Roberts F et al. (1999) HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol 29: 1351–1358.
- Manger ID, Hehl A, Parmley S et al. (1998) Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infect Immun 66: 1632–1637.
- Matrajt M (2010) Non-coding RNA in apicomplexan parasites. Mol Biochem Parasitol 174: 1–7.
- Matrajt M, Donald RG, Singh U & Roos DS (2002) Identification and characterization of differentiation mutants in the protozoan parasite Toxoplasma gondii. Mol Microbiol 44: 735–747.
- McCabe RE, Luft BJ & Remington JS (1984) Effect of murine interferon gamma on murine toxoplasmosis. J Infect Dis 150: 961–962.
- McFadden GI (2010) The apicoplast. Protoplasma [Epub ahead of print].
- McHugh TD, Gbewonyo A, Johnson JD, Holliman RE & Butcher PD (1993) Development of an in vitro model of Toxoplasma gondii cyst formation. FEMS Microbiol Lett 114: 325–332.
- Mehlhorn H & Frenkel JK (1980) Ultrastructural comparison of cysts and zoites of Toxoplasma gondii, Sarcocystis muris, and Hammondia hammondi in skeletal muscle of mice. J Parasitol 66: 59–67.
- Meissner M, Agop-Nersesian C & Sullivan Jr WJ (2007) Molecular tools for analysis of gene function in parasitic microorganisms. Appl Microbiol Biotechnol 75: 963–975.
- Mercier C, Howe DK, Mordue D, Lingnau M & Sibley LD (1998) Targeted disruption of the GRA2 locus in Toxoplasma gondii decreases acute virulence in mice. Infect Immun 66: 4176–4182.
- Montoya JG & Liesenfeld O (2004) Toxoplasmosis. Lancet 363: 1965–1976.
- Nagamune K, Hicks LM, Fux B, Brossier F, Chini EN & Sibley LD (2008) Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451: 207–210.
- Naguleswaran A, Elias EV, McClintick J, Edenberg HJ & Sullivan Jr WJ (2010) Toxoplasma gondii lysine acetyltransferase GCN5-A functions in the cellular response to alkaline stress and expression of cyst genes. PLoS Pathog 6: e1001232.
- Narasimhan J, Joyce BR, Naguleswaran A et al. (2008) Translation regulation by eukaryotic initiation factor-2 kinases in the development of latent cysts in Toxoplasma gondii. J Biol Chem 283: 16591–16601.
- Nicoll S, Wright S, Maley SW, Burns S & Buxton D (1997) A mouse model of recrudescence of Toxoplasma gondii infection. J Med Microbiol 46: 263–266.
- Olguin-Lamas A, Madec E, Hovasse A et al. (2011) A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence. PLoS pathog 7: e1001328.
- Painter HJ, Campbell TL & Llinas M (2011) The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol 176: 1–7.
- Parmley SF, Yang S, Harth G, Sibley LD, Sucharczuk A & Remington JS (1994) Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts. Mol Biochem Parasitol 66: 283–296.
- Parmley SF, Weiss LM & Yang S (1995) Cloning of a bradyzoite-specific gene of Toxoplasma gondii encoding a cytoplasmic antigen. Mol Biochem Parasitol 73: 253–257.
- Pereira-Chioccola VL, Vidal JE & Su C (2009) Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol 4: 1363–1379.
- Pfefferkorn ER, Eckel M & Rebhun S (1986) Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan. Mol Biochem Parasitol 20: 215–224.
- Radke JR & White MW (1998) A cell cycle model for the tachyzoite of Toxoplasma gondii using the Herpes simplex virus thymidine kinase. Mol Biochem Parasitol 94: 237–247.
- Radke JR, Guerini MN, Jerome M & White MW (2003) A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. Mol Biochem Parasitol 131: 119–127.
- Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS & White MW (2005) The transcriptome of Toxoplasma gondii. BMC Biol 3: 26.
- Radke JR, Donald RG, Eibs A, Jerome ME, Behnke MS, Liberator P & White MW (2006) Changes in the expression of human cell division autoantigen-1 influence Toxoplasma gondii growth and development. PLoS Pathog 2: e105.
- Rooney PJ, Neal LM & Knoll LJ (2011) Involvement of an RSC complex ortholog in developmental regulation in the parasite Toxoplasma gondii. PLoS One 6: e19570.
- Sabin A (1941) Toxoplasmic encephalitis in children. J Am Med Assoc 116: 801–807.
- Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G & Boothroyd JC (2005) Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect Immun 73: 695–702.
- Saksouk N, Bhatti MM, Kieffer S et al. (2005) Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25: 10301–10314.
- Samuel BU, Hearn B, Mack D et al. (2003) Delivery of antimicrobials into parasites. P Natl Acad Sci USA 100: 14281–14286.
- Sautel CF, Cannella D, Bastien O et al. (2007) SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol 27: 5711–5724.
- Sethi KK, Rahman A, Pelster B & Brandis H (1977) Search for the presence of lectin-binding sites on Toxoplasma gondii. J Parasitol 63: 1076–1080.
- Silva NM, Gazzinelli RT, Silva DA, Ferro EA, Kasper LH & Mineo JR (1998) Expression of Toxoplasma gondii-specific heat shock protein 70 during in vivo conversion of bradyzoites to tachyzoites. Infect Immun 66: 3959–3963.
- Singh U, Brewer JL & Boothroyd JC (2002) Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol Microbiol 44: 721–733.
- Soete M, Camus D & Dubremetz JF (1994) Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Exp Parasitol 78: 361–370.
- Steinfeldt T, Konen-Waisman S, Tong L et al. (2010) Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 8: e1000576.
- Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW & Sibley LD (2003) Recent expansion of Toxoplasma through enhanced oral transmission. Science 299: 414–416.
- Sullivan Jr WJ, Monroy MA, Bohne W et al. (2003) Molecular cloning and characterization of an SRCAP chromatin remodeling homologue in Toxoplasma gondii. Parasitol Res 90: 1–8.
- Sullivan Jr WJ, Narasimhan J, Bhatti MM & Wek RC (2004) Parasite-specific eukaryotic initiation factor-2 (eIF2) kinase required for stress-induced translation control. Biochem J 380: 523–531.
- Sullivan Jr WJ, Naguleswaran A & Angel SO (2006) Histones and histone modifications in protozoan parasites. Cell Microbiol 8: 1850–1861.
10.1111/j.1462-5822.2006.00818.x Google Scholar
- Sullivan Jr WJ, Smith AT & Joyce BR (2009) Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii: a review. Mem Inst Oswaldo Cruz 104: 155–161.
- Suzuki Y (2002) Host resistance in the brain against Toxoplasma gondii. J Infect Dis 185(suppl 1): S58–S65.
- Suzuki Y & Joh K (1994) Effect of the strain of Toxoplasma gondii on the development of toxoplasmic encephalitis in mice treated with antibody to interferon-gamma. Parasitol Res 80: 125–130.
- Suzuki Y, Orellana MA, Schreiber RD & Remington JS (1988) Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240: 516–518.
- Suzuki Y, Wong SY, Grumet FC et al. (1996) Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients. J Infect Dis 173: 265–268.
- Suzuki Y, Wang X, Jortner BS et al. (2010) Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells. Am J Pathol 176: 1607–1613.
- Tenter AM, Heckeroth AR & Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30: 1217–1258.
- Tomavo S & Boothroyd JC (1995) Interconnection between organellar functions, development and drug resistance in the protozoan parasite, Toxoplasma gondii. Int J Parasitol 25: 1293–1299.
- Toursel C, Dzierszinski F, Bernigaud A, Mortuaire M & Tomavo S (2000) Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii. Mol Biochem Parasitol 111: 319–332.
- Ueno A, Dautu G, Haga K, Munyaka B, Carmen G, Kobayashi Y & Igarashi M (2011) Toxoplasma gondii: a bradyzoite-specific DnaK-tetratricopeptide repeat (DnaK-TPR) protein interacts with p23 co-chaperone protein. Exp Parasitol 127: 795–803.
- Vanchinathan P, Brewer JL, Harb OS, Boothroyd JC & Singh U (2005) Disruption of a locus encoding a nucleolar zinc finger protein decreases tachyzoite-to-bradyzoite differentiation in Toxoplasma gondii. Infect Immun 73: 6680–6688.
- Vyas A, Kim SK, Giacomini N, Boothroyd JC & Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. P Natl Acad Sci USA 104: 6442–6447.
- Wallace GR & Stanford MR (2008) Immunity and Toxoplasma retinochoroiditis. Clin Exp Immunol 153: 309–315.
- Webster JP (2007) The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull 33: 752–756.
- Webster JP & McConkey GA (2010) Toxoplasma gondii-altered host behaviour: clues as to mechanism of action. Folia Parasitol (Praha) 57: 95–104.
- Weiss LM & Kim K (2000) The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci 5: D391–D405.
- Weiss LM, Laplace D, Takvorian PM, Tanowitz HB, Cali A & Wittner M (1995) A cell culture system for study of the development of Toxoplasma gondii bradyzoites. J Eukaryot Microbiol 42: 150–157.
- Weiss LM, Ma YF, Takvorian PM, Tanowitz HB & Wittner M (1998) Bradyzoite development in Toxoplasma gondii and the hsp70 stress response. Infect Immun 66: 3295–3302.
- Wek RC, Jiang HY & Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34: 7–11.
- Wong SY & Remington JS (1993) Biology of Toxoplasma gondii. AIDS 7: 299–316.
- Yahiaoui B, Dzierszinski F, Bernigaud A, Slomianny C, Camus D & Tomavo S (1999) Isolation and characterization of a subtractive library enriched for developmentally regulated transcripts expressed during encystation of Toxoplasma gondii. Mol Biochem Parasitol 99: 223–235.
- Yang S & Parmley SF (1997) Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184: 1–12.
- Yap GS, Scharton-Kersten T, Ferguson DJ, Howe D, Suzuki Y & Sher A (1998) Partially protective vaccination permits the development of latency in a normally virulent strain of Toxoplasma gondii. Infect Immun 66: 4382–4388.
- Zhang YW, Kim K, Ma YF, Wittner M, Tanowitz HB & Weiss LM (1999) Disruption of the Toxoplasma gondii bradyzoite-specific gene BAG1 decreases in vivo cyst formation. Mol Microbiol 31: 691–701.
- Zhang YW, Halonen SK, Ma YF, Wittner M & Weiss LM (2001) Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein. Infect Immun 69: 501–507.
- Zhang M, Fennell C, Ranford-Cartwright L et al. (2010) The Plasmodium eukaryotic initiation factor-2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J Exp Med 207: 1465–1474.