Phosphatidylcholine synthesis in Crithidia deanei: the influence of the endosymbiont
Allan Cézar De Azevedo-Martins
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorMariana Lins Frossard
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorWanderley De Souza
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorMarcelo Einicker-Lamas
Laboratório de Físico-Química Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorMaria Cristina Machado Motta
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorAllan Cézar De Azevedo-Martins
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorMariana Lins Frossard
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorWanderley De Souza
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorMarcelo Einicker-Lamas
Laboratório de Físico-Química Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorMaria Cristina Machado Motta
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
Search for more papers by this authorEditor: Derek Wakelin
Abstract
In this study, the role of phospholipid biosynthetic pathways was investigated in the establishment of the mutualistic relationship between the trypanosomatid protozoan Crithidia deanei and its symbiotic bacterium. Although the endosymbiont displays two unit membranes, it lacks a typical Gram-negative cell wall. As in other intracellular bacteria, phosphatidylcholine is a major component of the symbiont envelope. Here, it was shown that symbiont-bearing C. deanei incorporates more than two-fold 32Pi into phospholipids as compared with the aposymbiotic strain. The major phospholipid synthesized by both strains was phosphatidylcholine, followed by phosphatidylethanolamine and phosphatidylinositol. Cellular fractioning indicated that 32Pi-phosphatidylcholine is the major phospholipid component of the isolated symbionts, as well as of mitochondria. Although the data indicated that isolated symbionts synthesized phospholipids independently of the trypanosomatid host, a key finding was that the isolated bacteria synthesized mostly phosphatidylethanolamine, rather than phosphatidylcholine. These results indicate that phosphatidylcholine production by the symbiont depends on metabolic exchanges with the host protozoan. Insight about the mechanisms underlying lipid biosynthesis in symbiont-bearing C. deanei might help to understand how the prokaryote/trypanosomatid relation has evolved in the establishment of symbiosis.
References
- Alfieri SC & Camargo P (1982) Trypanosomatidae: isoleucine requirement and threonine deaminase in species with and without endosymbionts. Exp Parasitol 53: 371–380.
- Chang KP (1974) Ultrastructure of symbiotic bacteria in normal and antibiotic-treated Blastocrithidia culicis and Crithidia oncopelti. J Protozool 21: 699–707.
- Comerci DJ, Altabe S, Mendoza D & Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188: 1929–1934.
- Contreras LM, Vivas J & Urbina JA (1997) Altered lipid composition and enzyme activities of plasma membranes from Trypanosoma (Schizotrypanum) cruzi epimastigotes grown in the presence of sterol biosynthesis inhibitors. Pharmacol 53: 697–704.
- De Rudder KEE, Sohlenkamp C & Geiger O (1999) Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274: 20011–20016.
- De Rudder KEE, López-Lara IM & Geiger O (2000) Inactivation of the gene for phospholipids N-methyltransferase in Sinorhizobium melioti: phosphatidylcholine is required for normal growth. Mol Microbiol 37: 763–772.
- De Souza W & Motta MCM (1999) Endosymbiosis in trypanosomatids. FEMS Microbiol Lett 173: 1–8.
- Esteves MJG, Andrade AFB, Angluster J, De Souza W, Mundim MH, Roitman I & Pereira MEA (1982) Cell surface carbohydrates in Crithidiadeanei: influence of the endosymbiont. Eur J Cell Biol 28: 244–248.
- Exton JH (1994) Phosphatidylcholine breakdown and signal transduction, Biochim. Biophys Acta 1212: 26–42.
- Florin-Christensen J, Suarez CE, Florin-Christensen M, Hines SA, McElwain TF & Palmer GH (2000) Phosphatidylcholine formation is the predominant lipid biosynthetic event in the hemoparasite Babesia bovis. Mol Biochem Parasitol 106: 147–156.
-
Freymuller E &
Camargo EP (1981) Ultrastructural differences between species of trypanosomatids with and without endosymbionts.
J Protozool
2: 175–182.
10.1111/j.1550-7408.1981.tb02829.x Google Scholar
- Frossard ML, Seabra SH, DaMatta RA, De Souza W, De Mello FG & Motta MCM (2006) An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids. Biochem Biophys Res Commun 343: 443–449.
- Goldfine H (1982) Lipids of prokaryotes: structure and distribution. Current Topics in Membranes and Transport, Vol. 17 ( S Razin & S Rottem, eds), pp. 1–43. Academic Press, New York.
- Horwitz J & Perlman RL (1987) Measurement of inositol phospholipid metabolism in PC12 pheochromocytoma cells. Meth Enzymol 141: 169–175.
- Kanipes MI & Henry SA (1997) The phospholipids methyltransferases in yeast. Biochem Biophys Acta 1348: 134–141.
- Kennedy EP (1989) Discovery of the pathways for the biosynthesis of phosphatidylcholine. Phosphatidylcholine Metabolism ( DE Vance, ed), pp. 1–9. CRC Press, Boca Raton.
- López-Lara IM & Geiger O (2001) Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J Biotech 91: 211–221.
- Minder AC, Rudder KEE, Narberhaus F, Fischer H, Hennecke H & Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39: 1186–1198.
- Motta MCM, Soares MJ & De Souza W (1991) Freeze-fracture study of endosymbiont-bearing trypanosomatids of the Crithidia genus. Micr Electr Biol Cel 15: 131–144.
- Motta MCM, Monteiro-Leal LH, De Souza W, Almeida DF & Ferreira LCS (1997a) Detection of penicillin-binding proteins in endosymbionts of the trypanosomatid Crithidia deanei. J Euk Microbiol 44: 492–496.
- Motta MCM, Soares MJ, Attias M, Morgado J, Lemos AP, Saad-Nehme J, Meyer-Fernandes JR & De Souza W (1997b) Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. Eur J Cell Biol 72: 370–377.
- Mundim MH & Roitman I (1977) Extra nutritional requirements of artificially aposymbiotic Crithidia deanei. J Protozool 24: 329–331.
- Mundim MH, Roitman I, Hermans MA & Kitajima EW (1974) Simple nutrition of Crithidia deanei, a reduviid trypanosomatids with an endosymbiont. J Protozool 21: 518–521.
- Novak E, Freymuller E, Da Silva S & Da Silveira JF (1988) Protein synthesis in isolated symbionts from the flagellate protozoon Crithidia deanei. J Protozool 35: 375–378.
- Oda LM, Alviano CS, Costa e Silva Filho F, Angluster J, Roitmani I & De Souza W (1984) Surface anionic group in symbiont-bearing and symbiont-free strains of Crithidia deanei. J Protozool 31: 131–134.
- Palmié-Peixoto I, Rocha MR, Urbina J, De Souza W, Einicker-Lamas M & Motta MCM (2006) Effects of sterol-biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett 255: 33–42.
- Pessi G, Kociubinski G & Mamoun CB (2004) A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci 101: 6206–6211.
- Raetz CRH & Dowhan W (1990) Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 265: 1235–1238.
- Rock CO, Jackowski S & Cronan JE (1996) Lipid metabolism in prokaryotes. Biochemistry of Lipids, Lipoprotein and Membranes ( DE Vance & JE Vance, eds), pp. 35–74. Elsevier, Amsterdam.
- Rodrigues JCF, Attias M, Rodriguez C, Urbina JA & De Souza W (2002) Ultrastructural and Biochemical alterations induced by 22,26-azasterol, a Δ24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Ant Ag Chem 46: 487–499.
- Simões AP, Moll GN, Slotboom AJ, Roelofsen B & Op den Kamp JAF (1991) Selective internalization of choline-phospholipid in Plasmodium falciparum parasitized human erythrocytes. Biochem Biophy Acta 1063: 45–50.
- Soares MJ & De Souza W (1988) Freeze-fracture study of the endosymbiont of Blastocrithidia culicis. J Protozool 35: 370–374.
- Timmis JN, Aylife MA, Huang CY & Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5: 123–135.
- Warren LG (1960) Metabolism of Schizotrypanum cruzi, Chagas 1. Effect of culture age and substrate concentration on respiratory rate. J Parasitol 46: 529–539.
- Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S & Narberhaus F (2006) Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62: 906–915.
- Wilderman PJ, Vasil AI, Martin WE, Murphy RC & Vasil ML (2002) Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 184: 4792–4799.
- Yim L, Gonçalves R, Motta MCM, Foti L, Araújo P, Probst CM, Sunaga D, Goldenberg S, Krieger MA & Fragoso SP (2005) Cell division in the endosymbiotic bacterium of the trypanosomatid Crithidia deanei. Annals of XXI annual meeting of the Brazilian Society of Protozoology and XXXII Annual meeting on basic research in Chagas disease, 1, 50.
- Zufferey R & Mamoun CB (2002) Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs. Mol Biochem Parasitol 125: 127–134.