Bacterial cleavage of nitrogen to sulfone bonds in sulfamide and 1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide: formation of 2-nitrobenzamide by Gordonia sp.
Ulrike Rein
Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
Search for more papers by this authorCorresponding Author
Alasdair M. Cook
Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
*Corresponding author. Tel.: +49 (7531) 884247; Fax: +49 (7531) 882966; E-mail: [email protected]Search for more papers by this authorUlrike Rein
Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
Search for more papers by this authorCorresponding Author
Alasdair M. Cook
Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
*Corresponding author. Tel.: +49 (7531) 884247; Fax: +49 (7531) 882966; E-mail: [email protected]Search for more papers by this authorAbstract
Pure cultures of aerobic bacteria were isolated which could utilize sulfamate, sulfamide or 1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (BTDD) as sole source of sulfur for growth and thus cleave a N–S(O)x bond. The molar growth yields indicated that each source of sulfur was utilized quantitatively. This was confirmed directly for Gordonia sp. strain BT2 utilizing BTDD, which was converted quantitatively via an unidentified intermediate to 2-nitrobenzamide. Another isolate, strain BT1, could utilize saccharin to yield salicylamide, thus cleaving both the N–S(O)x and C–S(O)x bonds.
References
- 1 Webb, E.C. (1992) Enzyme Nomenclature. Academic Press, San Diego.
- 2 Schomburg, D. and Salzmann, M. (Eds.). (1991) N-Sulfoglucosamine Sulfohydrolase, Vol. 4. Springer-Verlag, Berlin.
- 3 Niimura, T., Tokieda, T. and Yamaha, T. (1974) Partial purification and some properties of cyclamate sulfamatase. J. Biochem. 75, 407–417.
- 4 Hughes, D.W. (1978) Malonic acid and derivatives. In: Kirk-Othmer Encyclopedia of Chemical Technology (Grayson, M. and Eckroth, D., Eds.), 3rd edn., Vol. 14, pp. 794–810. Wiley, New York.
- 5 Benson, G.A. and Spillane, W.J. (1991) Sulphamic acids and derivatives. In: The Chemistry of Sulphonic Acids, Esters and their Derivatives (Patai, S. and Rappoport, Z., Eds.), pp. 947–1036. Wiley, Chichester.
- 6 Metzger, A. (1994) Sulfamic acid. In: Ullmann's Encyclopedia of Industrial Chemistry (Gerhartz, W. and Elvers, B., Eds.), 5th edn., Vol. A25, pp. 439–441. VCH Verlagsgesellschaft, Weinheim.
- 7 Laue, H., Field, J.A. and Cook, A.M. (1996) Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ. Sci. Technol. 30, 1129–1132.
- 8 Kertesz, M.A., Kölbener, P., Stockinger, H., Beil, S. and Cook, A.M. (1994) Desulfonation of linear alkylbenzenesulfonate surfactants and related compounds by bacteria. Appl. Environ. Microbiol. 60, 2296–2303.
- 9 Eichhorn, E., van der Ploeg, J.R., Kertesz, M.A. and Leisinger, T. (1997) Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem. 272, 23031–23036.
- 10 Kertesz, M.A., Cook, A.M. and Leisinger, T. (1994) Microbial metabolism of sulfur- and phosphorus-containing xenobiotics. FEMS Microbiol. Rev. 15, 195–215.
- 11 Zürrer, D., Cook, A.M. and Leisinger, T. (1987) Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl. Environ. Microbiol. 53, 1459–1463.
- 12
Gregersen, T. (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria.
Eur. J. Appl. Microbiol. Biotechnol.
5, 123–127.
10.1007/BF00498806 Google Scholar
- 13 Gerhardt, P., Murray, R.G.E., Wood, W.A. and Krieg, N.R. (1994) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC.
- 14 Cook, A.M. and Hütter, R. (1981) s-Triazines as nitrogen sources for bacteria. J. Agric. Food Chem. 29, 1135–1143.
- 15 Denger, K., Laue, H. and Cook, A.M. (1997) Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143, 1919–1924.
- 16 Stipanuk, M.H., Hirschberger, L.L. and de la Rosa, J. (1987) Cysteinesulfinic acid, hypotaurine, and taurine: reversed-phase high-performance liquid chromatography. Methods Enzymol. 143, 155–160.
- 17 Cook, A.M. (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol. Rev. 46, 93–116.
- 18
Stackebrandt, E., Rainey, F.A. and Ward-Rainey, N.L. (1997) Proposal for a new hierarchic classification system.
Actinobacteria classis nov. Int. J. Syst. Bacteriol.
47, 479–491.
10.1099/00207713-47-2-479 Google Scholar
- 19 Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (1994) Bergey's Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, Baltimore.
- 20 Gilbert, S.C., Morton, J., Buchanan, S., Oldfield, C. and McRoberts, A. (1998) Isolation of a unique benzothiophene-desulfurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulfurization pathway. Microbiology 144, 2545–2553.
- 21 Rhee, S.-K., Chang, J.H., Chang, Y.K. and Chang, H.O. (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl. Environ. Microbiol. 64, 2327–2331.
- 22 Beil, S., Kehrli, H., James, P., Staudenmann, W., Cook, A.M., Leisinger, T. and Kertesz, M.A. (1995) Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium, and cloning of the arylsulfatase gene (atsA). Eur. J. Biochem. 229, 385–394.
- 23 Cook, A.M., Laue, H. and Junker, F., Microbial desulfonation. FEMS Microbiol. Rev., in press.
- 24 Hummerjohann, J., Küttel, E., Quadroni, M., Leisinger, T. and Kertesz, M.A. (1998) Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144, 1375–1386.
- 25 Kertesz, M.A., Leisinger, T. and Cook, A.M. (1993) Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J. Bacteriol. 175, 1187–1190.
- 26 Schnug, E. and Beringer, H. (Eds.) (1998) Sulfur in agroecosystems. Kluwer Academic, Dordrecht.
- 27 Cartwright, N.J. and Cain, R.B. (1959) Bacterial degradation of the nitrobenzoic acids. Biochem. J. 71, 248–261.
- 28 Daun, G., Lenke, H., Reuss, M. and Knackmuss, H.-J. (1998) Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ. Sci. Technol. 32, 1956–1963.