Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast
Thomas Vanhelmont
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorTom Vandebroek
Experimental Genetics Group, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorAnn De Vos
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorDick Terwel
Experimental Genetics Group, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorKatleen Lemaire
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorJayamani Anandhakumar
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorVanessa Franssens
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorErwin Swinnen
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorFred Van Leuven
Experimental Genetics Group, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorJoris Winderickx
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorThomas Vanhelmont
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorTom Vandebroek
Experimental Genetics Group, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorAnn De Vos
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorDick Terwel
Experimental Genetics Group, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorKatleen Lemaire
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorJayamani Anandhakumar
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorVanessa Franssens
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorErwin Swinnen
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorFred Van Leuven
Experimental Genetics Group, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorJoris Winderickx
Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
Search for more papers by this authorPresent addresses: Katleen Lemaire, Katholieke Universiteit Leuven, Afd. Biochemie, Herestraat 49-bus 901, BE-3000 Leuven, Belgium.Tom Vandebroek, Genzyme Flanders, 2440 Geel, Belgium.Dick Terwel, Klinische Neurowissenschaften, 53127 Bonn, Germany.
Editor: Bruno Dumas
Abstract
Unraveling the biochemical and genetic alterations that control the aggregation of protein tau is crucial to understand the etiology of tau-related neurodegenerative disorders. We expressed wild type and six clinical frontotemporal dementia with parkinsonism (FTDP) mutants of human protein tau in wild-type yeast cells and cells lacking Mds1 or Pho85, the respective orthologues of the tau kinases GSK3β and cdk5. We compared tau phosphorylation with the levels of sarkosyl-insoluble tau (SinT), as a measure for tau aggregation. The deficiency of Pho85 enhanced significantly the phosphorylation of serine-409 (S409) in all tau mutants, which coincided with marked increases in SinT levels. FTDP mutants tau-P301L and tau-R406W were least phosphorylated at S409 and produced the lowest levels of SinT, indicating that S409 phosphorylation is a direct determinant for tau aggregation. This finding was substantiated by the synthetic tau-S409A mutant that failed to produce significant amounts of SinT, while its pseudophosphorylated counterpart tau-S409E yielded SinT levels higher than or comparable to wild-type tau. Furthermore, S409 phosphorylation reduced the binding of protein tau to preformed microtubules. The highest SinT levels were found in yeast cells subjected to oxidative stress and with mitochondrial dysfunction. Under these conditions, the aggregation of tau was enhanced although the protein is less phosphorylated, suggesting that additional mechanisms are involved. Our results validate yeast as a prime model to identify the genetic and biochemical factors that contribute to the pathophysiology of human tau.
References
- Alonso Adel C, Li B, Grundke-Iqbal I & Iqbal K (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. P Natl Acad Sci USA 103: 8864–8869.
- Augustinack JC, Schneider A, Mandelkow EM & Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol 103: 26–35.
- Avila J, Dominguez J & Diaz-Nido J (1994) Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. Int J Dev Biol 38: 13–25.
- Barghorn S & Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41: 14885–14896.
- Bunker JM, Kamath K, Wilson L, Jordan MA & Feinstein SC (2006) FTDP-17 mutations compromise the ability of tau to regulate microtubule dynamics in cells. J Biol Chem 281: 11856–11863.
- Castellani RJ, Nunomura A, Lee HG, Perry G & Smith MA (2008) Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 14: 377–383.
- Chang E, Kim S, Yin H, Nagaraja HN & Kuret J (2008) Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps. J Neurochem 107: 1113–1123.
- Connell JW, Gibb GM, Betts JC et al. (2001) Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3beta identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes. FEBS Lett 493: 40–44.
- Delobel P, Flament S, Hamdane M et al. (2002) Functional characterization of FTDP-17 tau gene mutations through their effects on Xenopus oocyte maturation. J Biol Chem 277: 9199–9205.
- DeTure M, Ko LW, Easson C & Yen SH (2002) Tau assembly in inducible transfectants expressing wild-type or FTDP-17 tau. Am J Pathol 161: 1711–1722.
- Dickey CA, Kamal A, Lundgren K et al. (2007) The high-affinity HSP90–CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117: 648–658.
- Drewes G (2004) MARKing tau for tangles and toxicity. Trends Biochem Sci 29: 548–555.
- Ferrer I, Blanco R, Carmona M & Puig B (2001) Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm 108: 1397–1415.
- Galas MC, Dourlen P, Begard S, Ando K, Blum D, Hamdane M & Buee L (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem 281: 19296–19304.
- Gendron TF & Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4: 13.
- Gietz D, St Jean A, Woods RA & Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1425.
- Götz J, Gladbach A, Pennanen L, Van Eersel J, Schild A, David D & Ittner LM (2009) Animal models reveal role for tau phosphorylation in human disease. Biochim Biophys Acta, DOI: DOI: 10.1016/j.bbadis.2009.09.008.
- Gupta ML Jr, Bode CJ, Georg GI & Himes RH (2003) Understanding tubulin–Taxol interactions: mutations that impart Taxol binding to yeast tubulin. P Natl Acad Sci USA 100: 6394–6397.
- Hallows JL, Chen K, DePinho RA & Vincent I (2003) Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J Neurosci 23: 10633–10644.
- Han D, Qureshi HY, Lu Y & Paudel HK (2009) Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro. J Biol Chem 284: 13422–13433.
- Iqbal K, Liu F, Gong CX, Alonso AC & Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118: 53–69.
-
Jaworski T,
Dewachter I,
Seymour C-M,
Borghgraef P,
Devijver H,
Kuegler S &
Van Leuven F (2010) Alzheimer's disease: old problem, new views from transgenic and viral models.
Biochim Biophys Acta, DOI: DOI: 10.1016/j.bbadis.2010.1003.1005.
10.1016/j.bbadis.2010.1003.1005 Google Scholar
- Jeganathan S, Von Bergen M, Brutlach H, Steinhoff HJ & Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45: 2283–2293.
- Jeganathan S, Hascher A, Chinnathambi S, Biernat J, Mandelkow EM & Mandelkow E (2008) Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of Tau and generates a pathological (MC-1) conformation. J Biol Chem 283: 32066–32076.
-
Jicha GA,
Bowser R,
Kazam IG &
Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau.
J Neurosci Res
48: 128–132.
10.1002/(SICI)1097-4547(19970415)48:2<128::AID-JNR5>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J & Davies P (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer's disease. J Neurosci 19: 7486–7494.
- Kaeberlein M, Burtner CR & Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3: e84.
- Kar S, Fan J, Smith MJ, Goedert M & Amos LA (2003) Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J 22: 70–77.
- Kimura T, Ono T, Takamatsu J et al. (1996) Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia 7: 177–181.
- Landino LM, Skreslet TE & Alston JA (2004) Cysteine oxidation of tau and microtubule-associated protein-2 by peroxynitrite: modulation of microtubule assembly kinetics by the thioredoxin reductase system. J Biol Chem 279: 35101–35105.
- Laun P, Pichova A, Madeo F et al. (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39: 1166–1173.
- Li T & Paudel HK (2006) Glycogen synthase kinase 3beta phosphorylates Alzheimer's disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 45: 3125–3133.
- LoPresti P & Konat GW (2001) Hydrogen peroxide induces transient dephosphorylation of tau protein in cultured rat oligodendrocytes. Neurosci Lett 311: 142–144.
- Lu KP, Hanes SD & Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380: 544–547.
- Makrides V, Shen TE, Bhatia R, Smith BL, Thimm J, Lal R & Feinstein SC (2003) Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J Biol Chem 278: 33298–33304.
- Mancuso M, Coppede F, Murri L & Siciliano G (2007) Mitochondrial cascade hypothesis of Alzheimer's disease: myth or reality? Antioxid Redox Sign 9: 1631–1646.
- Mandelkow EM & Mandelkow E (1998) Tau in Alzheimer's disease. Trends Cell Biol 8: 425–427.
- Mandelkow EM, Stamer K, Vogel R, Thies E & Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24: 1079–1085.
- Martinez A, Portero-Otin M, Pamplona R & Ferrer I (2009) Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 20: 281–297.
- Matsumura N, Yamazaki T & Ihara Y (1999) Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Am J Pathol 154: 1649–1656.
- Melov S, Adlard PA, Morten K et al. (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2: e536.
- Moreira PI, Santos MS, Oliveira CR et al. (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7: 3–10.
- Perez M, Lim F, Arrasate M & Avila J (2000) The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J Neurochem 74: 2583–2589.
- Perry G, Nunomura A, Hirai K et al. (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases? Free Radical Bio Med 33: 1475–1479.
- Plattner F, Angelo M & Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281: 25457–25465.
- Poppek D, Keck S, Ermak G et al. (2006) Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J 400: 511–520.
- Rademakers R, Cruts M & Van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24: 277–295.
- Reynolds CH, Betts JC, Blackstock WP, Nebreda AR & Anderton BH (2000) Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74: 1587–1595.
- Reynolds MR, Berry RW & Binder LI (2007) Nitration in neurodegeneration: deciphering the ‘Hows’‘nYs’. Biochemistry 46: 7325–7336.
- Sahara N, Maeda S & Takashima A (2008) Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr Alzheimer Res 5: 591–598.
- Sakaue F, Saito T, Sato Y, Asada A, Ishiguro K, Hasegawa M & Hisanaga S (2005) Phosphorylation of FTDP-17 mutant tau by cyclin-dependent kinase 5 complexed with p35, p25, or p39. J Biol Chem 280: 31522–31529.
- Santacruz K, Lewis J, Spires T et al. (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309: 476–481.
- Schweers O, Mandelkow EM, Biernat J & Mandelkow E (1995) Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. P Natl Acad Sci USA 92: 8463–8467.
- Sergeant N, Bretteville A, Hamdane M et al. (2008) Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomic 5: 207–224.
- Spillantini MG, Crowther RA, Kamphorst W, Heutink P & Van Swieten JC (1998) Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. Am J Pathol 153: 1359–1363.
- Spillantini MG, Van Swieten JC & Goedert M (2000) Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Neurogenetics 2: 193–205.
- Stadler N, Hofer M & Sigler K (2001) Mechanisms of Saccharomyces cerevisiae PMA1 H+-ATPase inactivation by Fe2+, H2O2 and Fenton reagents. Free Radical Res 35: 643–653.
- Su B, Wang X, Lee HG, Tabaton M, Perry G, Smith MA & Zhu X (2010) Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468: 267–271.
- Takeda A, Smith MA, Avila J et al. (2000) In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem 75: 1234–1241.
- Tan YS, Morcos PA & Cannon JF (2003) Pho85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo. J Biol Chem 278: 147–153.
- Tanaka K, Nakafuku M, Satoh T et al. (1990) S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807.
- Tatebayashi Y, Planel E, Chui DH et al. (2006) c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis. FASEB J 20: 762–764.
- Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H & Van Leuven F (2008) Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 172: 786–798.
- Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. P Natl Acad Sci USA 76: 4350–4354.
- Tremblay MA, Acker CM & Davies P (2009) Tau phosphorylated at tyrosine 394 is found in Alzheimer's disease tangles and can be a product of the Abl-related kinase, Arg. J Alzheimers Dis 19: 721–733.
- Vandebroek T, Vanhelmont T, Terwel D et al. (2005) Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein tau expressed in yeast. Biochemistry 44: 11466–11475.
- Vandebroek T, Terwel D, Vanhelmont T et al. (2006) Microtubule binding and clustering of human Tau-4R and Tau-P301L proteins isolated from yeast deficient in orthologues of glycogen synthase kinase-3beta or cdk5. J Biol Chem 281: 25388–25397.
- Van Dyck E, Foury F, Stillman B & Brill SJ (1992) A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J 11: 3421–3430.
- Van Loon AP, Pesold-Hurt B & Schatz G (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. P Natl Acad Sci USA 83: 3820–3824.
- Van Swieten JC, Stevens M, Rosso SM et al. (1999) Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 46: 617–626.
- Vogelsberg-Ragaglia V, Bruce J, Richter-Landsberg C, Zhang B, Hong M, Trojanowski JQ & Lee VM (2000) Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol Biol Cell 11: 4093–4104.
- Wach A, Brachat A, Pohlmann R & Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.
- Wang Y, Martinez-Vicente M, Kruger U et al. (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18: 4153–4170.
- Winzeler EA, Shoemaker DD, Astromoff A et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906.
- Zambrano CA, Egana JT, Nunez MT, Maccioni RB & Gonzalez-Billault C (2004) Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radical Bio Med 36: 1393–1402.
- Zhang B, Higuchi M, Yoshiyama Y et al. (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24: 4657–4667.