THE ORIGIN OF WEST EUROPEAN SUBSPECIES OF HONEYBEES (APIS MELLIFERA): NEW INSIGHTS FROM MICROSATELLITE AND MITOCHONDRIAL DATA
Pierre Franck
Laboratoire Population, Génétique, Evolution, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
Laboratoire de Modélisation et de Biologie Evolutive, URLB-INRA, 488 rue Croix de Lavit, 34090 Montpellier cedex, France
Search for more papers by this authorLionel Garnery
Laboratoire Population, Génétique, Evolution, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
Search for more papers by this authorMichel Solignac
Laboratoire Population, Génétique, Evolution, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
Search for more papers by this authorJean-Marie Cornuet
Laboratoire de Modélisation et de Biologie Evolutive, URLB-INRA, 488 rue Croix de Lavit, 34090 Montpellier cedex, France
Search for more papers by this authorPierre Franck
Laboratoire Population, Génétique, Evolution, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
Laboratoire de Modélisation et de Biologie Evolutive, URLB-INRA, 488 rue Croix de Lavit, 34090 Montpellier cedex, France
Search for more papers by this authorLionel Garnery
Laboratoire Population, Génétique, Evolution, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
Search for more papers by this authorMichel Solignac
Laboratoire Population, Génétique, Evolution, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
Search for more papers by this authorJean-Marie Cornuet
Laboratoire de Modélisation et de Biologie Evolutive, URLB-INRA, 488 rue Croix de Lavit, 34090 Montpellier cedex, France
Search for more papers by this authorAbstract
Apis mellifera is composed of three evolutionary branches including mainly African (branch A), western and northern European (branch M), and southeastern European (branch C) populations. The existence of morphological clines extending from the equator to the Polar Circle through Morocco and Spain raised the hypothesis that the branch M originated in Africa. Mitochondrial DNA analysis revealed that branches A and M were characterized by highly diverged lineages implying very remote links between both branches. It also revealed that mtDNA haplotypes from lineages A coexisted with haplotypes M in the Iberian Peninsula and formed a south-north frequency cline, suggesting that this area could be a secondary contact zone between the two branches. By analyzing 11 populations sampled along a France-Spain/Portugal-Morocco-Guinea transect at 8 microsatellite loci and the DraI RFLP of the COI-COII mtDNA marker, we show that Iberian populations do not present any trace of “africanization” and are very similar to French populations when considering microsatellite markers. Therefore, the Iberian Peninsula is not a transition area. The higher haplotype A variability observed in Spanish and Portuguese samples compared to that found in Africa is explained by a higher mutation rate and multiple and recent introductions. Selection appears to be the best explanation to the morphological and allozymic clines and to the diffusion and maintenance of African haplotypes in Spain and Portugal.
Literature Cited
- Alpatov, W. W. 1929. Biometrical studies on variation and races of honeybee. Q. Rev. Biol. 4: 1–58.
- Aubert, J., and M. Solignac. 1990. Experimental evidence for mitochondrial DNA intogression between Drosophila species Evolution 44: 1272–1282.
- Ballard, J. W. O., and M. Kreitman. 1995. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Evol. 10: 485–488.
- Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: Models and estimation procedures. Am. J. Hum Genet. 19: 233–257.
- Chakraborty, R., and L. Jin. 1993. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distance. Pp. 153–175 in S. D. J. Pena, R. Chakraborty, J. T. Epplen, and A. J. Jeffreys, eds. DNA fingerprinting: state of the science. Birkhauser Verlag Basel, Switzerland.
10.1007/978-3-0348-8583-6_14 Google Scholar
- Cornuet, J.-M. 1982. The MDH polymorphism in some west mediterranean honeybee populations. IUSSI congress, Boulder, CO.
- Cornuet, J.-M. 1983. Reproduction, génétique et sélection de l'abeille. Bull. Tech. Apic. 10: 13–36.
- Cornuet, J.-M., and J. Fresnaye. 1989. Etude biométrique de colonies d'abeilles d'Espagne et du Portugal. Apidologie 20: 91–101.
- Cornuet, J.-M., and L. Garnery. 1991. Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie 22: 627–642.
- Cornuet, J.-M., and G. Luikart. 1996. Description and power analysis of two tests for inferring recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.
- Cornuet, J.-M., J. Fresnaye, and L. Tassencourt. 1975. Discrimination et classification de populations d'abeilles à partir de caractères biométriques. Apidologie 6: 145–187.
10.1051/apido:19750204 Google Scholar
- Cornuet, J.-M., J. Fresnaye, and P. Lavie. 1978. Etude biométrique de deux populations d'abeilles cévenoles. Apidologie 9: 41–55.
- Cornuet, J.-M., J. Albisetti, N. Mallet, and J. Fresnaye. 1982. Etude biométrique d'une population d'abeilles landaises. Apidologie 13: 3–13.
- Cornuet, J.-M., A. Douadi, H. Mosshine, and J. Fresnaye. 1988. Etude biométrique de populations d'abeilles marocaines. Apidologie 19: 355–366.
- Cornuet, J.-M., L. Garnery, and M. Solignac. 1991. Putative origin and function of the COI-COII intergenic region of Apis mellifera L. mitochondrial DNA. Genetics 1128: 393–403.
- Cornuet, J.-M., B. P. Oldroyd, and R. H. Crozier. 1995. Unequal thermostability of allelic forms of malate dehydrogenase in honeybees. J. Apic. Res. 34: 45–47.
- Crandall, K. A., and A. R. Templeton. 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny recontruction. Genetics 134: 959–969.
- Estoup, A., L. Garnery, M. Solignac, and J.-M. Cornuet. 1995a. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140: 679–695.
- Estoup, A., C. Tailliez, J.-M. Cornuet, and M. Solignac. 1995b. Size homoplasy and mutational processes of interrupted microsatellites in apidae species, Apis mellifera and Bombus terrestris. Mol. Biol. Evol. 12: 1074–1084.
10.1093/jhered/90.2.281 Google Scholar
- Felsenstein, J. 1993. PHYLIP: phylogeny inference package. Vers. 3.5. University of Washington, Seattle, WA.
- Garnery, L., and J.-M. Cornuet. 1994. Inter and intra lineage mitochondrial DNA variation in the honeybee Apis mellifera. 12th IUSSI Congress, Paris.
- Garnery, L., D. Vautrin, J.-M. Cornuet, M. Solignac. 1991. Phylogenic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie 22: 87–92.
- Garnery, L., J.-M. Cornuet, and M. Solignac. 1992. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1: 145–154.
- Garnery, L., M. Solignac, G. Celebrano, and J.-M. Cornuet. 1993. A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera. Experientia 49: 1016–1021.
- Garnery, L., H. Mosshine, B. P. Oldroyd, and J.-M. Cornuet. 1995. Mitochondrial DNA variation in Moroccan and Spanish honey bee populations. Mol. Ecol. 4: 465–471.
- Gyapai, G., J. Morissette, A. Vignal, C. Dib, C. Fizames, P. Millasseau, S. Marc, G. Bernardi, M. Lathrop, and J. Weissenbach. 1994. The 1993–94 Généthon human genetic linkage map. Nat. Genet. 7: 246–339.
- Hall, H. G., and D. R. Smith. 1991. Distinguishing African and European honeybee matrilines using amplified mitochondrial DNA. Proc. Nat. Acad. Sci. USA 88: 4548–4552.
- Hedges, S. B. 1992. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol. Biol. Evol. 9: 366–369.
- Hepburn, H. R., and S. E. Radloff. 1996. Morphometric and pheromonal analyses of Apis mellifera L. along a transect from Sahara to the Pyrenees. Apidologie 27: 35–45.
- Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, F. X. Villablanca, A. C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Nat. Acad. Sci. USA 86: 6196–6200.
- Nei, M. 1978. Estimation of average heterozygoty and genetic distance from a small number of individuals. Genetics 89: 145–163.
- Nei, M., and F. Tajima. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 583–590.
- Oldroyd, B. P., D. Rowe, J.-M. Cornuet, T. E. Rinderer, and R. H. Crozier. 1994. Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe. Heredity 74: 315–325.
- Orantes-Bermejo, F. J., and P. Garcia-Fernandez. 1995. Morphological variability of Apis mellifera iberica in different apiaries of southern Spain. J. Apic. Res. 34: 13–30.
10.1080/00218839.1995.11100882 Google Scholar
- Raymond, M., and F. Rousset. 1995. Genepop (version 1.2): population genetics software for exact test and ecumenism. J. Hered. 86: 248–250.
- Rubinsztein, D. C., W. Amos, J. Leggo, S. Goodburn, S. Jain, S. H. Li, R. L. Margolis, C. A. Ross, and M. A. Fergusson-Smith. 1995. Microsatellite evolution: evidence for directionality and variation in rate between species. Nat. Genet. 10: 337–343.
- Ruttner, F. 1988. Biogeography and taxonomy of honeybees. Springer-Verlag, Berlin.
10.1007/978-3-642-72649-1 Google Scholar
- Ruttner, F., L. Tassencourt, and J. Louveaux. 1978. Biometrical-statistical analysis of the geographic variability of Apis mellifera L. Apidologie 9: 363–381.
- Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
- Sheppard, W. S., T. E. Rinderer, J. A. Mazzoli, J. A. Stelzer, and H. Shimanuki. 1991. Gene flow between African and European-derived honeybee populations in Argentina. Nature. 349: 782–784.
- Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279.
- Smith, D. R. 1991. African bees in Americas: insight from biogeography and genetic. Trends Ecol. Evol. 6: 17–21.
- Smith, D. R., and T. C. Glenn. 1995. Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica). J. Hered. 86: 12–16.
- Smith, D. R., M. F. Palopoli, B. R. Taylor, L. Garnery, J.-M. Cornuet, M. Solignac, and W. M. Brown. 1991. Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica). J. Hered. 82: 96–100.
- Snedecor, G. W., and W. G. Cochran. 1978. Statistical methods. Iowa State Univ. Press, Ames, IA.
- Swofford, D. L. 1989. PAUP: phylogenetic analysis using parsimony. Rel. 3. Illinois Natural History Survey, Champaign, IL.
- Takezaki, N., and M. Nei. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144: 389–399.
- Watterson, G. A., and H. A. Guess. 1977. Is the most frequent allele the oldest. Theor. Popul. Biol. 11: 141–160.
- Weber, J. L., and C. Wrong. 1993. Mutation of human short tandem repeats. Hum. Mol. Genet. 2: 1123–1128.