ORIGIN AND BIOGEOGRAPHY OF AESCULUS L. (HIPPOCASTANACEAE): A MOLECULAR PHYLOGENETIC PERSPECTIVE
Qiu-Yun Xiang
Department of Biological Sciences, Idaho State University, Pocatello, Idaho, 83209-8007
Search for more papers by this authorDaniel J. Crawford
Department of Plant Biology, The Ohio State University, 1735 Neil Avenue, Columbus, Ohio, 43210-1293
Corresponding author. E-mail: [email protected].Search for more papers by this authorAndrea D. Wolfe
Department of Plant Biology, The Ohio State University, 1735 Neil Avenue, Columbus, Ohio, 43210-1293
Search for more papers by this authorYan-Cheng Tang
Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
Search for more papers by this authorClaude W. DePamphilis
Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
Search for more papers by this authorQiu-Yun Xiang
Department of Biological Sciences, Idaho State University, Pocatello, Idaho, 83209-8007
Search for more papers by this authorDaniel J. Crawford
Department of Plant Biology, The Ohio State University, 1735 Neil Avenue, Columbus, Ohio, 43210-1293
Corresponding author. E-mail: [email protected].Search for more papers by this authorAndrea D. Wolfe
Department of Plant Biology, The Ohio State University, 1735 Neil Avenue, Columbus, Ohio, 43210-1293
Search for more papers by this authorYan-Cheng Tang
Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
Search for more papers by this authorClaude W. DePamphilis
Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16802
Search for more papers by this authorAbstract
Sequences of chloroplast gene matK and internal transcribed spacers of nuclear ribosomal RNA genes were used for phylogenetic analyses of Aesculus, a genus currently distributed in eastern Asia, eastern and western North America, and southeastern Europe. Phylogenetic relationships inferred from these molecular data are highly correlated with the geographic distributions of species. The identified lineages closely correspond to the five sections previously recognized on the basis of morphology. Ancestral character-state reconstruction, a molecular clock, and fossil evidence were used to infer the origin and biogeographic history of the genus within a phylogenetic framework. Based on the molecular phylogenetic reconstruction of the genus, sequence divergence, and paleontological evidence, we infer that the genus originated during the transition from the Cretaceous to the Tertiary (~65 M.Y.B.P.) at a high latitude in eastern Asia and spread into North America and Europe as an element of the “boreotropical flora”; the current disjunct distribution of the genus resulted from geological and climatic changes during the Tertiary.
Literature Cited
- Axelrod, D. I. 1966. The Eocene Copper Basin flora of northeastern Nevada. Univ. Calif. Publ. Geol. Sci. 59: 1–124.
- Baldwin, B. G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phyl. Evol. 1: 3–16.
- BBI-NGPI (Beijing Botanical Institute and Nanjing Geological and Paleobiological Institute). 1978. Plant fossils of China. Vol. 3. Cenozoic plants of China. Science Press, Beijing. In Chinese.
- Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.
- Brown, J. H., and A. C. Gibson. 1983. Biogeography. C. V. Mosby Company, St. Louis, MO.
- Brunsfeld, S. J., P. S. Soltis, D. E. Soltis, P. A. Gadek, C. J. Quinn, D. D. Strenge, and T. A. Ranker. 1994. Phylogenetic relationships among genera of the conifer families Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Syst. Bot. 19: 53–262.
- Budantsev, L. Y. 1992. Early stages of formation and dispersal of the temperate flora in the Boreal region. Bot. Rev. 58: 1–48.
- Cullings, K. W. 1992. Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol. Ecol. 1: 233–240.
- Cunningham, C. W., and T. M. Collins. 1994. Developing model systems for molecular biogeography: vicariance and interchange in marine invertebrates. Pp. 405–433 in B. Schierwater, B. Streit, G. P. Wangner and R. DeSalle, eds. Molecular ecology and evolution: applications and approaches. Burkhauser Verlag, Basel, Switzerland.
10.1007/978-3-0348-7527-1_24 Google Scholar
- Depamphilis, C. W., and R. Wyatt. 1989. Hybridization and introgression in buckeyes (Aesculus: Hippocastanaceae): a review of the evidence and a hypothesis to explain long-distance gene flow. Syst. Bot. 14: 593–611.
- Depamphilis, C. W., and R. Wyatt. 1990. Electrophoretic confirmation of interspecific hybridization in Aesculus (Hippocastanaceae) and the genetic structure of a broad hybrid zone. Evolution 44: 1295–1317.
- Eernisse, D. J., and A. G. Kluge. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol. Biol. Evol. 10: 1170–1195.
- Fang, W.-P. 1981. Hippocastanaceae. Pp. 274–289 in W.-P. Fang, ed. Flora Reipublicae Popularis Sinicae. Vol. 46. Science Press, Beijing.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
- Gaut, B. S., S. V. Muse, W. D. Clark, and M. T. Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Mol. Evol. 35: 292–303.
- Gaut, B. S., S. V. Muse, and M. T. Clegg. 1993. Relative rates of nucleotide substitution in the chloroplast genome. Mol. Phyl. Evol. 2: 89–96.
- Gaut, B. S., B. Morton, B. C. McCaig, and M. T. Clegg. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Nat. Acad. Sci. USA 93: 10274–10279.
- Graham, A. 1972. Outline of the origin and historical recognition of floristic affinities between Asia and eastern North America. Pp. 1–18 in A. Graham, ed. Floristics and paleofloristics of Asia and eastern North America. Elsevier, Amsterdam.
- Hardin, J. W. 1957a. A revision of the American Hippocastanaceae. Brittonia 9:145–171, 173–195.
10.2307/2804722 Google Scholar
- Hardin, J. W. 1957b. Studies in the Hippocastanaceae. IV. Hybridization in Aesculus. Rhodora 59: 185–203.
- Hardin, J. W. 1960. Studies in the Hippocastanaceae, V. Species of the Old World. Brittonia 12: 26–38.
10.2307/2805332 Google Scholar
- Higgins, D. M., A. J. Bleasby, and R. Fuchs. 1992. CLUSTAL V: improved software for multiple sequence alignment. Comp. Appl. Biosci. 8: 189–191.
- Hillis, D. M., and J. P. Huelsenbeck. 1992. Signal, noise, and reliability in molecular phylogenetic analysis. J. Hered. 83: 189–195.
- Johnson, L. A., and D. E. Soltis. 1994. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst. Bot. 19: 143–156.
- Judd, W. S., R. W. Sanders, and M. J. Donoghue. 1994. Angiosperm family pairs: preliminary phylogenetic analyses. Harv. Pap. Bot. 1: 1–15.
- Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: molecular evolutionary genetic analysis. Vers. 1.0. Pennsylvania State Univ., University Park, PA.
- Larson, A. 1994. The comparison of morphological and molecular data in phylogenetic systematics. Pp. 371–390 in B. Schierwater, B. Streit, G. P. Wagner, and R. DeSalle, eds. Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, Switzerland.
10.1007/978-3-0348-7527-1_22 Google Scholar
- Leopold, E. B. 1969. Late Cenozoic palynology. Pp. 377–438 in R. H. Tschudy and R. A. Scott, eds. Aspects of palynology. Wiley-Interscience, New York.
- Leopold, E. B., and H. D. MacGinitie. 1972. Development and affinities of Tertiary floras in the Rocky Mountains. Pp. 147–200 in A. Graham, ed. Floristics and paleofloristics of Asia and eastern North America. Elsevier, Amsterdam.
- Li, W.-H. 1997. Molecular evolution. Sinauer, Sunderland, MA.
- Maddison, W. P., and D. R. Maddison. 1995. MacClade 3.05. Interactive analysis of phylogeny and character evolution. Sinauer, Sunderland, MA.
- Morgan, D. R., and D. E. Soltis. 1993. Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann. Mo. Bot. Gard. 80: 631–660.
- Parks, C. R., and J. F. Wendel. 1990. Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Am. J. Bot. 77: 1243–1256.
- Raven, P. H., and D. I. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61: 539–673.
- Raven, P. H., and D. I. Axelrod. 1978. Origin and relationships of the California flora. Univ. Calif. Publ. Bot. 72: 1–134.
- Rouse, G. E., and W. H. Mathews. 1979. Tertiary geology and palynology of the Quesnel area, British Columbia. Can. Petrol. Geol. 27: 418–445.
- Sang, T., D. J. Crawford, and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Nat. Acad. Sci. USA 92: 6813–6817.
- Sang, T., D. J. Crawford, and T. F. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84: 1120–1136.
- Savard, L., P. Li, S. H. Strauss, M. W. Chase, M. Michaud, and J. Bousquet. 1994. Chloroplast and nuclear gene sequences indicate Late Pennsylvatican time for the last common ancestor of extant seed plants. Proc. Nat. Acad. Sci. USA 91: 5163–5167.
- Soltis, D. E., and R. Kuzoff. 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera Group (Saxifragaceae). Evolution 49: 727–742.
- Soltis, P. S., and D. E. Soltis. 1995. Plant molecular systematics: inferences of phylogeny and evolutionary processes. Evol. Biol. 28: 139–194.
- Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony. Vers. 3.1.1. Illinois Natural History Survey, Champaign, IL.
- Swofford, D. L., and W. P. Maddison. 1992. Parsimony, character-state reconstructions, and evolutionary inferences. Pp. 186–223 in R. L. Mayden, ed. Systematics, historical ecology, and North American freshwater fishes. Stanford Univ. Press, Stanford, CA.
- Templeton, A. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221–244.
- Tiffney, B. H. 1985. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arn. Arb. 66: 243–273.
- Wen, J., and R. K. Jansen. 1995. Morphological and molecular comparisons of Campsis grandiflora and C. radicans (Biognoniaceae), an eastern Asian and eastern North American vicariad species pair. Plant Syst. Evol. 196: 173–183.
- White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 in M. Innis, D. Gelfand, J. Sninsky, and T. White, eds. PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA.
- Wilson, M. A., B. Gaut, and M. T. Clegg. 1990. Chloroplast DNA evolves slowly in the palm family. Mol. Biol. Evol. 7: 303–314.
- Wolfe, J. A. 1969. Neogene floristic and vegetational history of the Pacific Northwest. Madrono 20: 83–110.
- Wolfe, J. A. 1975. Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and Tertiary. Ann. Mo. Bot. Gard. 62: 264–279.
- Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. U.S. Geol. Surv. Prof. Pap. 997: 1–108.
- Xiang, Q.-Y., D. E. Soltis, D. R. Morgan, and P. S. Soltis. 1993. Phylogenetic relationships of Cornus L. sensu lato and putative relatives inferred from rbcL sequence data. Ann. Mo. Bot. Gard. 80: 723–734.
- Xiang, Q.-Y., D. E. Soltis, and P. S. Soltis. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Am. J. Bot. 85: 285–297.