Inborn Errors of Metabolism Presenting in Childhood
Correction(s) for this article
-
Erratum
- Volume 21Issue 3Journal of Neuroimaging
- pages: 306-306
- First Published online: June 27, 2011
Banu Cakir MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorMehmet Teksam MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorDilek Kosehan MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorKayihan Akin MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorAsli Koktener MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorBanu Cakir MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorMehmet Teksam MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorDilek Kosehan MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorKayihan Akin MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorAsli Koktener MD
From the Department of Radiology, Fatih University Faculty of Medicine, Ankara, Turkey (BC, MT, DK, KA, AK).
Search for more papers by this authorConflict of Interest: None.
J Neuroimaging 2011;21:e117-e133.
ABSTRACT
Neurodegenerative and neurometabolic disorders may cause significant morbidity and mortality in children. Imaging is important in early diagnosis of metabolic disorders and in determining the extent of brain injury. Especially after the development of new techniques such as diffusion-weighted magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), neuroimaging plays more important role in the diagnosis and management of these disorders. In these disorders, usually a mutation causes a clinically significant block in one or more metabolic pathways. This blockage usually results in either a deficiency of the product or in an accumulation of substrate with damage induced by either storage or toxicity. The presenting symptoms are usually nonspecific. In some of the metabolic disorders, long-term dietary or medical treatment options are available, and to make an early diagnosis in these disorders is important before the brain damage occurs. Prompt diagnosis, particularly in treatable disorders, is crucial to prevent neurological sequelae or death. If treatment is indeed available, neuroimaging also provides a baseline in evaluation of the efficacy of treatment. Therefore, the neuroradiologist should be aware of these disorders to prevent devastating results of delayed diagnosis. Metabolic disorders affecting the central nervous system, both gray and white matter can be classified by involvement of the primary cellular organelle as lysosomal, peroxisomal, mitochondrial disorders, or biochemical classification can be made as amino acid and organic acid metabolism defects or primary white matter disorders. This article presents the neuroimaging features of relatively more common metabolic disorders.
References
- 1 Menkes JH, Hurst PL, Craig JM. A new syndrome: progressive familial infantile cerebral dysfunction associated with unusual urinary substance. Pediatrics 1954; 14: 462-464.
- 2 Brismar J, Aqeel A, Brismar G, et al. Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR Am J Neuroradiol 1990; 11: 1219-1228.
- 3 Taccone A, Schiaffino MC, Cerone R, et al. Completed tomography in maple syrup urine disease. Eur J Radiol 1992; 14: 207-212.
- 4
Uziel G,
Savoiardo M,
Nardocci N.
CT and MRI in maple syrup urine disease.
Neurology
1998; 38: 486-488.
10.1212/WNL.38.3.486 Google Scholar
- 5 Kendall BE. Disorders of lysosomes, peroxisomes and mitochondria. AJNR Am J Neuroradiol 1992; 13: 621-653.
- 6 Cavalleri F, Berardi A, Burlina AB, et al. Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 2002; 44: 499-502.
- 7 Dreyfus PM, Prensky AL. Further observations on the biochemical lesion in maple syrup urine disease. Nature 1967; 214: 276.
- 8 Cecil KM, Kos RS. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn Reson Imaging 2006; 17: 275-293.
- 9 Zimmerman RA, Wang ZJ. The value of proton MR spectroscopy in pediatric metabolic brain disease. AJNR 1997; 18: 1872-1879.
- 10 Barnes ND, Hull D, Balgobin L, et al. Biotin-responsive propionic acidemia. Lancet 1970; 2: 244-245.
- 11 Van Der Meer SB, Poggi F, Spada M, et al. Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr 1994; 125(6 Pt 1): 903-908.
- 12 Brismar J, Ozand PT. CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR 1994; 15: 1459-1473.
- 13 Yesildag A, Ayata A, Baykal B, et al. Magnetic resonance imaging and diffusion-weighted imaging in methylmalonic acidemia. Acta Radiol 2005; 46(1): 101-103.
- 14 Christensen E. A fibroblast glutaryl-CoA dehydrogenase assay using detritiation of 3H-labelled glutaryl-CoA: application in the genotyping of the glutaryl-CoA dehydrogenase locus. Clin Chim Acta 1993; 220: 71-80.
- 15 Stokke O, Goodman SI, Thompson JA, et al. Glutaric aciduria; presence of glutaconic and beta-hydroxyglutaric acids in urine. Biochem Med 1975; 12: 386-391.
- 16 Goodman SI, Norenberg MD, Shikes RH, et al. Glutaric aciduria: biochemical and morphologic considerations. J Pediatr 1977; 90: 746-750.
- 17 Brismar J, Ozand PT. CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. AJNR Am J Neuroradiol 1995; 16: 675-683.
- 18 Pfluger T, Weil S, Muntau A, et al. Glutaric aciduria type I: a serious pitfall if diagnosed too late. Eur Radiol 1997; 7: 1264-1266.
- 19 Gascon GG, Ozand PT, Brismar J. Movement disorders in childhood organic acidurias. Clinical, neuroimaging, and biochemical correlations. Brain Dev 1994; 16(Suppl): 94-103.
- 20 Strauss KA, Puffenberger EG, Robinson DL, et al. Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet 2003; 121(1): 38-52.
- 21 Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol 2002 Jul; 67(4): 259-279.
- 22 Chen YF, Huang YC, Liu HM, et al. MRI in a case of adult-onset citrullinemia. Neuroradiology 2001 Oct; 43(10): 845-847.
- 23 Takanashi J, Barkovich AJ, Cheng SF, et al. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 2003; 24(6): 1184-1187.
- 24 Takanashi J, Barkovich AJ, Cheng SF, et al. Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 2003; 24(3): 390-393.
- 25 Powers JM, Moser HW. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 1998; 8(1): 101-120.
- 26 Barkovich AJ, Peck WW. MR of Zellweger syndrome. AJNR Am J Neuroradiol 1997; 18(6): 1163-1170.
- 27 Unay B, Kendirli T, Atac K, et al. Caudothalamic groove cysts in Zellweger syndrome. Clin Dysmorphol 2005; 14(3): 165-167.
- 28 Grayer J. Recognition of Zellweger syndrome in infancy. Adv Neonatal Care 2005; 5(1): 5-13.
- 29 Cakirer S, Savas MR. Infantile Refsum disease: serial evaluation with MRI. Pediatr Radiol 2005; 35(2): 212-215.
- 30 Suzuki Y, Imamura A, Shimozawa N, et al. The clinical course of childhood and adolescent adrenoleukodystrophy before and after Lorenzo's oil. Brain Dev 2001; 23(1): 30-33.
- 31 Aubourg P, Sellier N, Chaussain JL, et al. MRI detects cerebral involvement in neurologically asymptomatic patients with adrenoleukodystrophy. Neurology 1989; 39(12): 1619-1621.
- 32 Moser HW, Loes DJ, Melhem ER, et al. X-Linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics 2000; 31(5): 227-239.
- 33 Engelbrecht V, Rassek M, Gartner J, et al. The value of new MRI techniques in adrenoleukodystrophy. Pediatr Radiol 1997; 27(3): 207-215.
- 34 Loes DJ, Fatemi A, Melhem ER, et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 2003; 61(3): 369-374.
- 35 Melhem ER, Loes DJ, Georgiades CS, et al. X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. AJNR Am J Neuroradiol 2000; 21(5): 839-844.
- 36 Eichler FS, Itoh R, Barker PB, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 2002; 22: 245-252.
- 37 Valanne L, Ketonen L, Majander A, et al. Neuroradiologic findings in children with mitochondrial disorders. AJNR Am J Neuroradiol 1998; 19(2): 369-377.
- 38 Arii J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol 2000; 21(8): 1502-1509.
- 39 Krageloh-Mann I, Grodd W, Schoning M, et al. Proton spectroscopy in five patients with Leigh's disease and mitochondrial enzyme deficiency. Dev Med Child Neurol 1993; 35(9): 769-776.
- 40 Sue CM, Bruno C, Andreu AL, et al. Infantile encephalopathy associated with the MELAS A3243G mutation. J Pediatr 1999; 134(6): 696-700.
- 41 Barkovich AJ, Good WV, Koch TK, et al. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol 1993; 14(5): 1119-1137.
- 42 Allard JC, Tilak S, Carter AP. CT and MR of MELAS syndrome. AJNR Am J Neuroradiol 1988; 9(6): 1234-1238.
- 43 Yonemura K, Hasegawa Y, Kimura K, et al. Diffusion-weighted MR imaging in a case of mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. AJNR Am J Neuroradiol 2001; 22(2): 269-272.
- 44 Möller HE, Kurlemann G, Pützler M, et al. Magnetic resonance spectroscopy in patients with MELAS. J Neurol Sci. 2005 Mar 15; 229-230: 131-139.
- 45 Wray SH, Provenzale JM, Johns DR, et al. MR of the brain in mitochondrial myopathy. AJNR Am J Neuroradiol. 1995; 16(5): 1167-1173.
- 46 Dewhurst AG, Hall D, Schwartz MS, et al. Kearns-Sayre syndrome, hypoparathyroidism, and basal ganglia calcification. J Neurol Neurosurg Psychiatry 1986; 49(11): 1323-1324.
- 47 Maegawa GH, Stockley T, Tropak M, et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 2006 Nov; 118(5): e1550-e1562.
- 48 Inglese M, Nusbaum AO, Pastores GM, et al. MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis. AJNR Am J Neuroradiol 2005; 26(8): 2037-2042.
- 49 Aydin K, Bakir B, Tatli B, et al. Proton MR spectroscopy in three children with Tay-Sachs disease. Pediatr Radiol 2005; 35(11): 1081-1085.
- 50 Yuksel A, Yalcinkaya C, Islak C, et al. Neuroimaging findings of four patients with Sandhoff disease. Pediatr Neurol 1999; 21(2): 562-565.
- 51 Jarvela I, Schleutker J, Haataja L, et al. Infantile form of neuronal ceroid lipofuscinosis (CLN1) maps to the short arm of chromosome 1. Genomics 1991; 9: 170-173.
- 52 Vanhanen SL, Raininko R, Santavuori P, et al. MRI evaluation of the brain in infantile neuronal ceroid-lipofuscinosis. Part 1: postmortem MRI with histopathologic correlation. J Child Neurol 1995; 10(6): 438-443.
- 53 Vanhanen SL, Puranen J, Autti T, et al. Neuroradiological findings (MRS, MRI, SPECT) in infantile neuronal ceroid-lipofuscinosis (infantile CLN1) at different stages of the disease. Neuropediatrics 2004; 35(1): 27-35.
- 54 Vanhanen SL, Raininko R, Autti T, et al. MRI evaluation of the brain in infantile neuronal ceroid-lipofuscinosis. Part 2: MRI findings in 21 patients. J Child Neurol 1995; 10(6): 444-450.
- 55 Autti T, Raininko R, Vanhanen SL, et al. MRI of neuronal ceroid lipofuscinosis. I. Cranial MRI of 30 patients with juvenile neuronal ceroid lipofuscinosis. Neuroradiology 1996; 38(5): 476-482.
- 56 Autti T, Raininko R, Santavuori P, et al. MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type. Neuroradiology 1997; 39(5): 371-377.
- 57 Confort-Gouny S, Chabrol B, Vion-Dury J, et al. MRI and localized proton MRS in early infantile form of neuronal ceroid-lipofuscinosis. Pediatr Neurol 1993; 9(1): 57-60.
- 58 Taccone A, Tortori Donati P, Marzoli A, et al. Mucopolysaccharidosis: thickening of dura mater at the craniocervical junction and other CT/MRI findings. Pediatr Radiol 1993; 23(5): 349-352.
- 59 Matheus MG, Castillo M, Smith JK, et al. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology 2004; 46(8): 666-672.
- 60 Wenger DA, Suzuki K, Suzuki Y, et al. Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In: CR Scriver, AL Beaudet, WS Sly, D Valle, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York : McGraw-Hill, 2001; 3669-3693.
- 61 Kwan E, Drace J, Enzmann D. Specific CT findings in Krabbe disease. AJR Am J Roentgenol 1984; 143(3): 665-670.
- 62 Baram TZ, Goldman AM, Percy AK. Krabbe disease: specific MRI and CT findings. Neurology 1986; 36(1): 111-115.
- 63 Sasaki M, Sakuragawa N, Takashima S, et al. MRI and CT findings in Krabbe disease. Pediatr Neurol 1991; 7(4): 283-288.
- 64 Farina L, Bizzi A, Finocchiaro G, et al. MR imaging and proton MR spectroscopy in adult Krabbe disease. Am J Neuroradiol 2000; 21: 1478-1482.
- 65 Kolodny EH, Moser HW. Sulfatide lipidosis: metachromatic leukodystrophy. In: JB Stanbury, JB Wyngaarten, DS Frederickson, et al. eds. The Metabolic Basis of Inherited Disease, 5th ed. NewYork , NY : McGraw-Hill, 1983; 881-905.
- 66 Faerber EN, Melvin J, Smergel EM. MRI appearances of metachromatic leukodystrophy. Pediatr Radiol 1999; 29(9): 669-672.
- 67 Van Der Knaap MS, Barth PG, Stroink H, et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 1995; 37: 324-334.
- 68 Morita H, Imamura A, Matsuo N, et al. MR imaging and 1H-MR spectroscopy of a case of van der Knaap disease. Brain Dev 2006; 28(7): 466-469.
- 69 Saijo H, Nakayama H, Ezoe T, et al. A case of megalencephalic leukoencephalopathy with subcortical cysts (van der Knaap disease): molecular genetic study. Brain Dev 2003; 25(5): 362-366.
- 70 Van Der Knaap MS, Barth PG, Gabreels FJ, et al. A new leukoencephalopathy with vanishing white matter. Neurology 1997; 48: 845-855.
- 71 Van Der Knaap MS, Kamphorst W, Barth PG, et al. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology 1998; 51: 540-547.
- 72 Patay Z, Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol. 2005; 15: 2284-2303.
- 73 Van Der Knaap MS, Naidu S, Pouwels PJ, et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol 2002; 23(9): 1466-1474.
- 74 Mercimek-Mahmutoglu S, Van Der Knaap MS, Baric I, et al. Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). Report of a new case. Neuropediatrics 2005; 36(3): 223-226.
- 75 Koeppen AH, Robitaille Y. Pelizaeus-Merzbacher disease. J Neuropathol Exp Neurol 2002; 61: 747-759.
- 76 Hanefeld FA, Brockmann K, Pouwels PJ, et al. Quantitative proton MRS of Pelizaeus-Merzbacher disease: evidence of dys- and hypomyelination. Neurology 2005; 65(5): 701-706.
- 77 Toft PB, Geiss-Holtorff R, Rolland MO, et al. Magnetic resonance imaging in juvenile Canavan disease. Eur J Pediatr 1993; 152(9): 750-753.
- 78 Grodd W, Krageloh-Mann I, Klose U, et al. Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy. Radiology 1991; 181(1): 173-181.
- 79 Lee JM, Kim AS, Lee SJ, et al. A case of infantile Alexander disease accompanied by infantile spasms diagnosed by DNA analysis. J Korean Med Sci 2006; 21(5): 954-957.
- 80 Van Der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001; 22(3): 541-552.
- 81 Brockmann K, Dechent P, Meins M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol 2003; 250(3): 300-306.
- 82 Stöckler S, Holzbach U, Hanefeld F, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994; 36: 409-413.
- 83 Schulze A. Creatine deficiency syndromes. Mol Cell Biochem 2003; 244(1-2): 143-150.
- 84 deGrauw TJ, Cecil KM, Byars AW, et al. The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 2003; 244(1-2): 45-48.
- 85 Gabis L, Parton P, Roche P, et al. In vivo 1H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging 2001; 11(2): 209-211.
- 86 Bindu PS, Desai S, Shehanaz KE, et al. Clinical heterogeneity in Hallervorden-Spatz syndrome: a clinicoradiological study in 13 patients from South India. Brain Dev 2006 Jul; 28(6): 343-347.
- 87 Kitis O, Tekgul H, Erdemir G, et al. Identification of axonal involvement in Hallervorden-Spatz disease with magnetic resonance spectroscopy. J Neuroradiol. 2006 Apr; 33(2): 129-132.