A Novel Member of the Cyclin-Dependent Kinase Family in Paramecium tetraurelia
HONG ZHANG
Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
Search for more papers by this authorCorresponding Author
JAMES D. BERGER
Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
Corresponding Author: J. Berger—Telephone number: 604-822-3369; FAX number: 604-822-2416; Email: [email protected]Search for more papers by this authorHONG ZHANG
Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
Search for more papers by this authorCorresponding Author
JAMES D. BERGER
Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
Corresponding Author: J. Berger—Telephone number: 604-822-3369; FAX number: 604-822-2416; Email: [email protected]Search for more papers by this authorABSTRACT
Passage through the cell cycle in eukaryotes requires the successive activation of different cyclin-dependent protein kinases. Here, we describe the identification and characterization of a novel class of cyclin-dependent protein kinase, termed Cdk2, in the ciliate Paramecium tetraurelia. It is 301 amino acids long, 7 amino acids shorter than Cdk1, the CDK that is associated with macronuclear DNA synthesis. All the catalytic domains typical of protein kinases can be located within the sequence and putative regulatory phosphorylation sites equivalent to Thr14, Tyr15, and Thr161 in human CDK1 are also conserved. The‘PSTAIRE’region characteristic of most CDKs is perfectly conserved. Cdk2 shares only 48% homology to Cdk1 at the amino acid level, suggesting that the evolutionary separation of Cdk1 and Cdk2 is ancient, and implying that they have different roles in cell cycle regulation. Like Cdk1, Cdk2 does not bind to yeast pl3suc1, even though it has better conservation of pl3suc1 binding sites than Cdk1 does. The Cdk2 protein level is relatively constant throughout the vegetative cell cycle. Cdk2 exhibits kinase activity towards bovine histone H1 in vitro with the maximal level late in the cell cycle, suggesting it may be involved in the regulation of cytokinesis. Our results further support the view that an analogue of the cyclin-dependent kinase cell cycle regulatory system like that of yeast and higher eukaryotic cells operates in Paramecium and that a family of cyclin-dependent kinases may control different aspects of the Paramecium cell cycle.
References
- Adl, M. S. & Berger, J. D. 1992. Timing of micronuclear mitosis and its relation to commitment to division in Paramecium tetraurelia. Dev. Genet, 13: 229–234.
- Adl, M. S. & Berger, J. D. 1995. Comparison of methods of cell cycle analysis in Paramecium tetraurelia. J. Eukaryot. Microbiol, 42: 213–218.
- Allen, S. L., Altschuler, M. I., Bruns, P. J., Cohen, J., Doerder, F. P., Gaertig, J., Gorovsky, M., Orias, E. & Turkewitz, A. 1998. Proposed genetic nomenclature rules for Tetrahymena thermophila, Paramecium primaurelia and Paramecium tetraurelia. Genetics, 149: 459–462.
- Arellano, M. & Moreno, S. 1997. Regulation of CDK/cyclin complexes during the cell cycle. Int. J. Biochem. Cell Biol., 29: 559–573.
- Beach, D., Durkacz, B. & Nurse, P. 1982. Functionally homologous cell cycle control genes in budding and fission yeast. Nature, 300: 706–709.
- Berger, J. D. 1971. Kinetics of incorporation of DNA precursors from ingested bacteria into macronuclear DNA of Paramecium aurelia. J. Protozool., 18: 419–429.
-
Berger, J. D.
1988. The cell cycle and regulation of cell mass and macronuclear DNA content. In: H. D. Görtz, (ed.), Paramecium. Springer-Verlag,
Berlin
. Pp.
97–119.
10.1007/978-3-642-73086-3_7 Google Scholar
- Berger, J. D. 1989. The cell cycle in lower eukaryotes. Curr, Opin, Cell Biol., 1: 256–262.
- Bradford, M. M. 1976. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.
- Caron, E & Meyer, E. 1985. Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature, 314: 185–188.
- Chou, Y.-H., Bischoff, J. R., Beach, D. & Goldman, R. D. 1990. Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell, 62: 1063–1071.
- Colasanti, J., Tyers, M. & Sundaresan, V. 1991. Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays, Proc. Natl. Acad. Sci. USA, 88: 3377–3381.
- Ducommun, B., Brambilla, P. & Draetta, G. 1991. Mutations at sites involved in Sucl binding inactivate Cdc2. Mol Cell. Biol, 11: 6177–6184.
- Dutta, A. & Stillman, B. 1992. Cdc family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J., 11: 2189–2199.
- Elledge, S. J. & Spottswood, M. R. 1991. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1. EMBO J., 10: 2653–2659.
- Engler-Blum, G., Meier, M., Frank, J. & Muller, G. A. 1993. Reduction of background problems in nonradioactive Northern and Southern blot analysis enables higher sensitivity than P32-based hybridizations. Anal. Biochem., 210: 235–244.
- Fisher, R. P. 1997. CDKs and cyclins in transition(s). Curr. Opin. Genet & Develop., 7: 32–38.
-
Frohman, M. A.
1990. RACE: rapid amplification of cDNA ends. In: J. J. Snincky &
T. J. White, (ed.), PCR protocols. Academic Press,
San Diego
,
California
, p.
28–38.
10.1016/B978-0-12-372180-8.50008-1 Google Scholar
- Haese, G. J. D., Walworth, N., Carr, A. M. & Gould, K. L. 1995. The Weel protein kinase regulates T14 phosphorylation of fission yeast Cdc2. Mol. Biol. Cell, 6: 371–385.
- Hanks, S. K., Quinn, A. M. & Hunter, T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 241: 42–52.
- Harlow, E. & Lane, D. 1988. Antibodies, a laboratory manual. Cold Spring Harbor Laboratory Press, New York p. 473–510.
- Hayles, J., Beach, D. H., Durkacz, B. & Nurse, P. M. 1986. The fission yeast cell cycle control gene cdc2; isolation of a sequence Suc1 that supresses cdc2 mutant function. Mol. Gen. Genet., 202: 291–293.
- Hershko, A. 1997. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol, 9: 788–799.
- Higgins, D., Thompson, J. & Gibson, T. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673–4680.
- Hindley, J. & Phear, G. A. 1984. Sequence of the cell division gene cdc2 from Schizosaccharomyces pombe: patterns of splicing and homology to protein kinase. Gene, 31: 129–134.
- Hindley, J., Phear, G., Stein, M. & Beach, D. 1987. Suc1* encodes a predicted 13-kilodalton protein that is essential for cell viability and is directly involved in the division cycle of Schizosaccharomyces pombe. Mol. Cell. Biol, 7: 504–511.
- Horowitz, S. & Gorovsky, M. A. 1985. An unusual genetic code in nuclear genes of Tetrahymena. Proc. Natl. Acad. Sci. USA, 82: 2452–2455.
- John, P. C. L., Sek, F. J. & Lee, M. G. 1989. A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas, and a similar protein is detectable in higher plants and remote taxa. Plant Cell, 1: 1185–1193.
- Kaldis, P., Sutton, A. & Solomon, M. J. 1996. The Cdk-Activating Kinase (CAK) from budding yeast. Cell, 86: 553–564.
- Kobayashi, H., Stewart, E., Poon, R., Adamczewski, J. P., Gannon, J. & Hunt, T. 1992. Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol. Biol. Cell, 3: 1279–1294.
- Koetsier, P. A., Schorr, J. & Doerfler, W. 1993. A rapid optimized protocol for downward alkaline Southern blotting of DNA. Bio-Techniques, 15: 260–261.
- Krek, W. & Nigg, E. A. 1991. Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J., 10: 305–316.
- Krek, W. & Nigg, E. A. 1992. Cell cycle regulation of vertebrate p34cdc2 activity: identification of Thrl61 as an essential in vivo phosphorylation site. New Biologist., 4: 323–329.
- Laemmli, U. K. 1970. Cleavage of structured proteins during the assembly of the head of the bacteriophage T4. Nature, 277: 680–685.
- Lee, M. G. & Nurse, P. 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature, 327: 31–35.
- Lohia, A. & Samuelson, J. 1993. Cloning of the Ehcdc2 gene from Entamoeba histolytica encoding a protein kinase p34cdc2 homologue. Gene, 127: 203–207.
- Lorinze, A. & Reed, S. 1984. Primary structure homology between the product of yeast cell cycle control gene CDC28 and vertebrate oncogenes. Nature, 307: 183–185.
- Marcote, M. J., Knighton, D. R., Basi, G., Sowadski, J. M., Brambilla, P., Draetta, G. & Taylor, S. S. 1993. A three-dimensional model of the Cdc2 protein kinase: Localization of Cyclin- and Sucl-binding regions and phosphorylation sites. Mol, Cell. Biol, 13: 5122–5131.
- Martindale, D. W. 1989. Codon usage in Tetrahymena and other ciliates. J. Protozool, 36: 29–34.
- Meyerson, M., Enders, G. H., Wu, C.-L., Su, L.-K., Gorka, C., Nelson, C., Harlow, E. & Tsai, L.-H. 1992. A family of human cdc2-related protein kinases. EMBO, J. 11: 2909–2917.
- Michaelis, C. & Weeks, G. 1992. Isolation and characterization of a cdc2 cDNA from Dictyostelium discoideum. Biochim. Biophys. Acta., 1132: 35–42.
- Minshull, J., Blow, J. J. & Hunt, T. 1989. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell, 56: 947–956.
- Moreno, S., Hayles, J. & Nurse, P. 1989. Regulation of p34cdc2 protein kinase during mitosis. Cell, 58: 361–372.
- Morgan, D. O. 1995. Principles of CDK regulation. Nature, 374: 131–134.
- Nasmyth, K. 1996. At the heart of the budding yeast cell cycle. Trends. Genet., 12: 405–412.
- Nigg, E. A. 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bio Eassays, 17: 471–480.
- Ninomiya-tsuji, J., Nomoto, S., Yasuda, H., Reed, S. & Matsumoto, K. 1991. Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation. Proc. Natl. Acad. Sci. USA, 88: 9006–9010.
- Norbury, C., Blow, J. & Nurse, P. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J., 10: 3321–3329.
- Nurse, P., & Bissett, Y. 1981. Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292: 558–560.
- Pasternak, J. 1967. Differential gene activity in Paramecium aurelia. J. Exp. Zool, 165: 395–418.
- Peter, M., Nakagawa, J., Doree, M., Labbe, J. C. & Nigg, E. A. 1990. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell, 61: 591–602.
-
Pine, J.
1995. Cyclins and cyclin-dependent kinases: a biochemical view.
Biochem, J., 308: 697–711.
10.1042/bj3080697 Google Scholar
- Pines, J. & Hunter, T. 1989. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell, 58: 833–846.
- Pines, J. & Hunter, T. 1990. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature, 346: 760–763.
- Pines, J. 1996. Cyclin from sea urchins to Helas: making the human cell cycle. Colworth Medal Lecture. Biochem. Soc. Trans., 24: 15–33.
- Preer, J. R., Preer, L. B., Rudman, B. M. & Barnett, A. J. 1985. Deviation from the universal code shown by the gene for surface protein 51A in Paramecium. Nature, 314: 188–190.
- Prescott, D. M. 1994. The DNA of ciliated protozoa. Microbiol. Rev., 58: 233–267.
- Rasmussen, C. D. & Berger, J. D. 1982. Downward regulation of cell size in Paramecium tetraurelia: effects of increased cell size, with or without increased DNA content, on the cell cycle. J. Cell Sci., 57: 315–329.
- Rasmussen, C. D., Berger, J. D. & Ching, A. L. 1986. Effects of increased cell mass and altered gene dosage on the timing of initiation of macronuclear DNA synthesis in Paramecium tetraurelia. Exp. Cell Res., 165: 53–62.
- Richardson, H. E., Stueland, C. S., Thomas, J., Russell, P. & Reed, S. I. 1990. Human cDNAs encoding homologs of the small p34cdc28/cdc2 associated protein in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genes Dev., 4: 1332–1334.
- Riley, D. E., Campell, L. A., Puolakkainen, M. & Krieger, J. N. 1993. Trichomonas vaginalis and early evolving DNA and protein sequences of the CDC2/28 protein kinase family. Mol. Microbiol, 8: 517–519.
- Ross-MacDonald, P. B., Graeser, R., Kappes, B. & Williamson, D. H. 1994. Isolation and expression of a gene specifying a cdc2–like gene protein kinase from the human malaria parasite Plasmodium falciparum. Eur. J. Biochem., 220: 693–701.
- Roth, S. Y., Collini, M. P., Draetta, G., Beach, D. & Allis, C. D. 1991. A cdc2-like kinase phosphorylates histone H1 in the amitotic macronucleus of Tetrahymena. EMBO J., 10: 2069–2075.
- Russell, C. B., Fraga, D. & Hinrichsen, R. D. 1994. Extremely short 20–33 nucleotide introns are the standard length in Paramecium tetraurelia. Nucleic Acids Res., 22: 1221–1225.
- Sambrook, J., Fritsch, E. F. & Maniatis, T. 1989. Molecular cloning. Cold Spring Harbor Laboratory Press, New York .
- Satterwhite, L. L., Lohka, M. J., Wilson, K. L., Scherson, T. Y., Cisek, L. J., Corden, J. L. & Pollard, T. D. 1992. Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc: a mechanism for the timing of cytokinesis. J. Cell Biol, 118: 595–605.
- Serrano, M., Hannon, G. J. & Beach, D. 1993. A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD/CDK4. Nature, 366: 704–707.
- Sharp, P.M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H. & Wright, E. 1988. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucl. Acid. Res., 16: 8207–8211.
- Smith, D. B. & Johnson, K. S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusion with glutathione Stransferase. Gene, 67: 31–40.
-
Sonneborn, T. M.
1970. Methods in Paramecium research.
Methods Cell Physiol, 4: 241–339.
10.1016/S0091-679X(08)61758-6 Google Scholar
- Stern, B. & Nurse, P. 1996. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet., 12: 345–350.
- Tang, L., Adl, M. S. & Berger, J. D. 1997. A cdc2-related kinase is associated with macronuclear DNA synthesis in Paramecium tetraurelia. J. Eukaryol. Microbiol, 44: 269–275.
- Tang, L., Pelech, S. L. & Berger, J. D. 1994. A cdc2-like kinase associated with commitment to division in Paramecium tetraurelia. J. Eukaryot. Microbiol, 41: 381–387.
- Tang, L., Pelech, S. L. & Berger, J. D. 1995. Isolation of the cell cycle control gene cdc2 from Paramecium tetraurelia. Biochim. Biophys. Acta., 1265: 161–167.
- Thuret, J.-Y, Valay, J.-G., Faye, G. & Mann, C. 1996. Civ (CAK in vivo), a novel Cdk-activating kinase. Cell, 86: 565–576.
- Toyoshima, H. & Hunter, T. 1994. P27, a novel inhibitor of Gl cyclin-cdk protein kinase activity, is related to p21. Cell, 78: 67–74.