The Kinetic Complexity of Paramecium Macronuclear Deoxyribonucleic Acid
A. T. SOLDO
Research Laboratories of the Veterans Administration Hospital and the Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33125
Search for more papers by this authorG. A. GODOY
Research Laboratories of the Veterans Administration Hospital and the Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33125
We would like to thank Mr. Lincoln Bank for the phase micrograph of the macronuclear preparation. This work was supported in part by National Science Foundation Grant GB 28104.
Search for more papers by this authorA. T. SOLDO
Research Laboratories of the Veterans Administration Hospital and the Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33125
Search for more papers by this authorG. A. GODOY
Research Laboratories of the Veterans Administration Hospital and the Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33125
We would like to thank Mr. Lincoln Bank for the phase micrograph of the macronuclear preparation. This work was supported in part by National Science Foundation Grant GB 28104.
Search for more papers by this authorSYNOPSIS
DNA extracted from macronuclei of axenically cultured Paramecium aurelia has been characterized with regard to its kinetic complexity. Renaturation of macronuclear DNA from this protozoon appeared to follow 2nd order kinetics and revealed the presence of 2 components: a main component comprising ∼96% of the genome which renatured slowly and a minor component comprising ∼4% of the genome which renatured at a rate ∼3000 faster than the main component. The value of the kinetic complexity of the main component has been estimated at 3.8 × 1010 daltons and that of the minor component at 1.45 × 107 daltons. It is suggested that the macronucleus contains ∼840 diploid copies of the slowly renaturing component; for each copy of the latter there are ∼100 copies of the fast renaturing component.
References
- 1 Bak, A. L., Christiansen, C. & Stenderup, A. 1970. Bacterial genome sizes determined by DNA renaturation studies. J. Gen. Microbiol. 64, 377–80.
- 2 Behme, R. & Berger, J. D. 1970. DNA content of Paramecium aurelia, stock 51. J. Protozool. (Suppl.), 17, 20.
- 3 Bendich, A. 1957. Methods for characterization of nucleic acids by base composition, in S. P. Colowick & N. O. Kaplan, eds., Methods in Enzymology, Academic Press, New York , 3, 715–23.
- 4 Britten, R. J. & Kohne, D. E. 19651966. Nucleotide sequence repetition in DNA. Carnegie Inst. Year Book 65, 78–125.
- 5 Cairns, J. 1963. The chromosome of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28, 43–5.
- 6 Dische, V. Z. 1930. Über einige neue charakteristiche Farbreaktionen der Thymonukleinsaure und eine Mikromethode zur Bestimmung derselben in tierischen Organen mit Hilfe dieser Reaktionen. Mikrochemie 8, 4–32.
- 7 Flavell, R. A. & Jones, I. G. 1970. Kinetic complexity of Tetrahymena pyriformis nuclear DNA. Biochem. J. 116, 155–7.
- 8 Flavell, R. A. & Jones, I. G. 1971. DNA from isolated pellicles of Tetrahymena. J. Cell Science 9, 719–26.
- 9 Flavell, R. A. & Jones, I. G. 1971. Paramecium mitochondrial DNA. Renaturation and hybridization studies. Biochim. Biophys. Acta, 232, 255–60.
- 10 Gillis, M., De Ley, J. & De Cleene, M. 1970. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12, 143–53.
- 11 Gorovsky, M. 1970. Studies on nuclear structure and function in Tetrahymena pyriformis. J. Cell. Biol. 47, 619–30.
- 12 Jones, A. S. 1953. The isolation of bacterial nucleic acids using cetyltrimethylammonium bromide (Cetavalon). Biochim. Biophys. Acta 10, 607–12.
- 13 Kirby, K. S. 1957. A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic and protein. Biochem. J. 66, 495–503.
- 14 Koehler, L. H. 1952. Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal. Chem. 24, 1576–9.
- 15 Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–75.
- 16 Mandel, M. & Marmur, J. 1968. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA, in L. Grossman & K. Moldave, eds., Nucleic Acids, in S. P. Colowick & N. O. Kaplan, eds., Methods in Enzymology, Academic Press, New York . 12B, 195–206.
- 17 Marmur, J. 1961. Procedure for isolation of DNA from micro-organisms. J. Mol. Biol. 3, 208–18.
- 18 Martin, R. G. & Ames, B. N. 1961. A method for determining the sedimentation behavior of enzymes: Application to protein mixtures. J. Biol. Chem. 236, 1372–9.
- 19 Meselson, M., Stahl, F. & Vinograd, J. 1957. Equilibrium sedimentation of macromolecules in density gradients. Proc. Natl. Acad. Sci. U. S. 43, 581–8.
- 20 Ogur, M. & Rosen, G. 1950. The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch Biochem. 25, 262–76.
- 21 Retel, J. & Planta, R. J. 1968. The investigation of the ribosomal RNA sites in yeast DNA by the hybridization technique. Biochim. Biophys. Acta, 169, 416–29.
- 22 Schildkraut, C. L., Marmur, J. & Doty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4, 430–43.
- 23 Sevag, M. G., Lackman, D. B. & Smolens, J. 1938. The isolation of the components of streptococcal nucleoproteins in serologically active forms. J. Biol. Chem. 124, 425–36.
- 24 Seidler, R. & Mandel, M. 1971. Quantitative aspects of deoxyribonucleic acid renaturation: Base composition, state of chromosomal replication, and polynucleotide homologies. J. Bacteriol. 106, 608–14.
- 25 Soldo, A. T. & Godoy, G. A. 1971. The kinetic complexity of deoxyribonucleic acid of Paramecium aurelia and its symbiotes. J. Protozool. (Suppl.) 18, 9.
- 26 Soldo, A. T. & van Wagtendonk, W. J. 1967. A method for the mass collection of axenically cultivated Paramecium aurelia. J. Protozool. 14, 497–8.
- 27 Soldo, A. T., Godoy, G. A. & van Wagtendonk, W. J. 1966. Growth of particle-free Paramecium aurelia in axenic culture. J. Protozool. 13, 492–7.
- 28 Soldo, A. T., van Wagtendonk, W. J. & Godoy, G. A. 1970. Nucleic acid and protein content of purified endosymbiote particles of Paramecium aurelia. Biochim. Biophys. Acta 204, 325–33.
- 29 Stone, A. L. & Bradley, D. F. 1961. Aggregation of acridine orange bound to poly-anions: The stacking tendency of deoxyribonucleic acids. J. Amer. Chem. Soc. 83, 3627–34.
- 30 Studier, F. W. 1965. Sedimentation studies of the size and shape of DNA. J. Mol. Biol. 11, 373–90.
- 31 Suyama, Y. 1966. Mitochondrial deoxyribonucleic acid of Tetrahymena. Its partial physical characterization. Biochemistry 5, 2214–21.
- 32 Walker, P. M. B. 1968. How different are the DNA's from related animals Nature 219, 228–32.
- 33 Wells, R. & Birnstiel, M. 1969. Kinetic complexity of chloroplastal DNA and mitochondrial DNA from higher plants. Biochem. J. 112, 777–86.
- 34 Wetmur, J. G. & Davidson, N. 1968. Kinetics of renaturation of DNA. J. Mol. Biol. 31, 349–70.