The Cell Cycle in Crithidia fasciculata. Temporal Relationships between Synthesis of Deoxyribonucleic Acid in the Nucleus and in the Kinetoplast1, 2
WILLIAM B. COSGROVE
Dept. of Zoology, Univ. of Georgia, Athens, Ga. 30601
Search for more papers by this authorMARIANNE J. SKEEN
Dept. of Zoology, Univ. of Georgia, Athens, Ga. 30601
Yerkes Regional Primate Research Center, Emory Univ., Atlanta, Georgia 30322. A portion of this material was submitted in partial fulfillment of the requirements for the M. S. degree.
Search for more papers by this authorWILLIAM B. COSGROVE
Dept. of Zoology, Univ. of Georgia, Athens, Ga. 30601
Search for more papers by this authorMARIANNE J. SKEEN
Dept. of Zoology, Univ. of Georgia, Athens, Ga. 30601
Yerkes Regional Primate Research Center, Emory Univ., Atlanta, Georgia 30322. A portion of this material was submitted in partial fulfillment of the requirements for the M. S. degree.
Search for more papers by this authorSupported in part by NIH grant AI 08509 to WBC.
The following abbreviations are used: 3H-TdR = thymidinemethyl-3H = tritiated thymidine; t = time in minutes; T = generation time in minutes. The subscripts k and n refer to kinetoplast and nucleus.
Abstract
SYNOPSIS. Autoradiographic technics with tritium-labeled thymidine have been used to determine G1, S, G2 and D for the kinetoplast and the nucleus of Crithidia fasciculata at 15, 25 and 32 C. The kinetoplast completes division before the nucleus at all 3 temperatures. The S phases of both organelles occur in approximate synchrony and are approximately equal in length but the nucleus begins and completes S before the kinetoplast at the 2 lower temperatures. This relationship is reversed at 32 C. Most of the effect of temperature on generation time is due to its effect on the length of S.
The results are compared with similar studies on C. luciliae, Trypanosoma mega, other protozoa and tissue cells in culture. The role of the approximate synchrony of nuclear and kinetoplastic cycles in maintenance of the kinetoplastic condition is discussed and the hypothesis is proposed that this synchrony results from the sharing by nucleus and kinetoplast of the same mechanism for the production of the deoxyribonucleotides used in replication of their respective DNAs.
References
- 1 Anderson, W. & Hill, G. C. 1969. Division and DNA synthesis in the kinetoplast of Crithidia fasciculata. J. Cell Sci. 4, 611–20.
- 2 Baserga, R. 1968. Biochemistry of the cell cycle: a review. Cell Tissue Kinet. 1, 167–91.
- 3 Boorst, P., Kroon, A. M. & Ruttenberg, G. J. C. M. 1967. Mitochondrial DNA and other forms of cytoplasmic DNA, in D Shugar, Genetic Elements: Properties and Function, Academic Press, Inc., New York 81–116.
- 4 Cameron, I. L. & Stone, G. E. 1964. Relation between the amount of DNA per cell and the duration of DNA synthesis in three strains of Tetrahymena pyriformis. Exp. Cell Res. 36, 510–4.
- 5 Cosgrove, W. B. 1966. Acriflavin-induced akinetoplasty in Crithidia fasciculata. Acta Protozool. 4, 155–60.
- 6 Cosgrove, W. B. & Skeen, M. J. 1969. Effects of hydroxyurea on Crithidia fasciculata. J. Protozool. 16(suppl.), 12.
- 7 Finney, D. J. 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge Univ. Press, London .
- 8 Graham, F. C. 1966. The effect of cell size and DNA content on the cellular regulation of DNA synthesis in haploid and diploid embryos. Exp. Cell Res. 43, 13–9.
- 9 Guttes, E. W., Hanawalt, P. C. & Guttes, S. 1967. Mitochondrial synthesis and the mitotic cycle in Physarum polycephalum. Biochim. Biophys. Acta 142, 181–94.
- 10 Hawley, E. S. & Wagner, R. P. 1967. Synchronous mitochondrial division in Neurospora crassa. J. Cell Biol. 35, 489–99.
- 11 Howard, A. & Pelc, S. R. 1952. Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 6 (Suppl.), 261–73.
- 12 Johnson, R. T. & Harris, H. 1969. DNA synthesis and mitosis in fused cells I. HeLa homokaryons. J. Cell Sci. 5, 603–24.
- 13 Johnson, R. T. & Harris, H. 1969. DNA synthesis and mitosis in fused cells II. HeLa-chick erythrocyte heterokaryons. J. Cell Sci. 5, 625–43.
- 14 MacKenzie, T. B., Stone, G. E. & Prescott, D. M. 1966. The duration of G1, S and G2 at different temperatures in Tetrahymena pyriformis HSM. J. Cell Biol. 31, 633–5.
- 15 McDonald, B. B. 1962. Synthesis of deoxyribonucleic acid by micro-nuclei and macronuclei of Tetrahymena pyriformis. J. Cell Biol. 13, 193–203.
- 16 Newton, B. A. & LePage, R. W. F. 1967. Preferential inhibition of extranuclear deoxyribonucleic acid synthesis by the trypanocide berenil. Biochem. J. 105, 50P.
- 17 Nygaard, O. F., Güttes, S. & Rusch, H. P. 1960. Nucleic acid metabolism in a slime mold with synchronous mitosis. Biochim. Biophys. Acta 38, 298–306.
- 18 Parsons, J. A. & Rustad, R. C. 1968. The distribution of DNA among dividing mitochondria of Tetrahymena pyriformis. J. Cell Biol. 37, 683–93.
- 19 Prescott, D. M. 1966. The syntheses of total macronuclear protein, histone, and DNA during the cell cycle in Euplotes eurystomus. J. Cell Biol. 31, 1–9.
- 20 Prescott, D. M. & Goldstein, L. 1967. Nuclear-cytoplasmic interaction in DNA synthesis. Science 155, 469–70.
- 21 Prescott, D. M., Kimball, R. F. & Carrier, R. F. 1962. Comparison between the timing of micronuclear and macronuclear DNA synthesis in Euplotes eurystomus. J. Cell Biol. 13, 175–7.
- 22 Prescott, D. M. & Stone, G. E. 1967. Replication and function of the protozoan nucleus, in T-T. Chen Research in Protozoology, Pergamon Press, New York 2, 117–46.
- 23 Riou, G. & Pautrizel, R. 1969. Nuclear and kinetoplastic DNA from trypanosomes. J. Protozool. 16, 509–13.
- 24 Roodyn, D. B. & Wilkie, D. 1968. The Biogenesis of Mitochondria. Methuen & Co. Ltd., London .
- 25 Siskin, J. E., Morasca, L. & Kibby, S. 1965. Effects of temperature on the kinetics of the mitotic cycle of mammalian cells in culture. Exp. Cell Res. 39, 103–16.
- 26 Stanners, C. P. & Till, J. E. 1960. DNA synthesis in L-strain mouse cells. Biochim. Biophys. Acta 37, 406–19.
- 27 Steinert, M. 1969. Specific loss of kinetoplastic DNA in Trypanosomatidae treated with ethidium bromide. Exp. Cell Res. 55, 248–52.
- 28 Steinert, M. 1969. Reversible inhibition of the division of Crithidia luciliae by hydroxyurea and its use for obtaining synchronized cultures. FEBS Lett. 5, 291–4.
- 29 Steinert, M. & Steinert, G. 1962. La synthèse de l'acide désoxyribonucléique au cours du cycle de division de Trypanosoma mega. J. Protozool. 9, 203–11.
- 30 Steinert, M. & Van Assel, S 1967. Réplication coordonnées des acides désoxyribonucléiques nucléaire et mitochondrial chez “Crithidia luciliae.” Arch. Intern. Physiol. Biochem. 75, 370–1.
- 31 Steinert, M., Van Assel, S. & Steinert, G. 1969. Étude, par autoradiographie, des effets du bromure d'éthidium sur la synthèse des acides nucléiques de Crithidia luciliae. Exp. Cell Res. 56, 69–74.
- 32 Van Assel, S, &, Steinert, M 1969. Réplication de l'acide désoxyribonucléique nucléaire et kinétoplastique chez “Crithidia luciliae” synchronisée par l'hydroxyurée. Arch. Intern. Physiol. Biochem. 77, 574–5.
- 33 Wagner, R. P. 1969. Genetics and phenogenetics of mitochondria. Science 163, 1026–31.
- 34 Walker, P. B. M. & Mitchison, J. M. 1957. DNA synthesis in two ciliates. Exp. Cell Res. 13, 167–70.
- 35 Wimber, D. E. 1966. Duration of the nuclear cycle in Tradescantia root tips at three temperatures as measured with H3-thymidine. Am. J. Bot. 53, 21–4.
- 36 Wintersberger, E. & Viehhauser, G. 1968. Function of mitochondrial DNA in yeast. Nature 220, 699–702.
- 37 Woodard, J., Gelber, B. & Swift, H. 1961. Nucleoprotein changes during the mitotic cycle in Paramecium aurelia. Exp. Cell Res. 28, 258–64.
- 38 Young, C. W. & Hodas, S. 1964. Hydroxyurea: Inhibitory effect on DNA metabolism. Science 146, 1172–4.