Heart and Lung Preservation for Transplantation
Corresponding Author
Charles B. Huddleston M.D.
Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri
Address for correspondence: Charles B. Huddleston, M.D., #1 Children's Place, Suite 5S50, Children's Hospital, St. Louis, MO 63110. Fax: 314-454-2381; e-mail: [email protected]Search for more papers by this authorEric N. Mendeloff M.D.
Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri
Search for more papers by this authorCorresponding Author
Charles B. Huddleston M.D.
Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri
Address for correspondence: Charles B. Huddleston, M.D., #1 Children's Place, Suite 5S50, Children's Hospital, St. Louis, MO 63110. Fax: 314-454-2381; e-mail: [email protected]Search for more papers by this authorEric N. Mendeloff M.D.
Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri
Search for more papers by this authorAbstract
Abstract Since the beginning of transplantation the search for optimal means of organ preservation has been ongoing. One of the major causes of death early following heart or lung transplantation is graft failure. Factors that play a role in this problem include recipient and donor issues, but clearly procurement techniques and preservation solutions are important. This article summarizes the history, current clinical practice, and research devoted to heart and lung preservation for transplantation.
References
- 1 Bigelow WG., Lindsay WK., Greenwood WF. Hypothermia. Its possible role in cardiac surgery: An investigation of actors governing survival in dogs at low body temperatures. Ann Surg 1950; 132: 849–852.
- 2 Bigelow WG., Mustard WT., Evans JG. Some physiological concepts of hypothermia and their application to cardiac surgery. J Thorac Cardiovasc Surg 1954; 28: 463–468.
- 3 Lower RR., Shumway NE. Studies of orthotopic transplantation of the canine heart. Surg Forum 1960; 11: 18–19.
- 4 Barnard CN. A human cardiac transplant: An interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J 1967; 41: 1271–1274.
- 5 Watson DC., Reitz BA., Baumgartner WA., et al. Distant heart procurement for transplantation. Surgery 1973; 74: 284–288.
- 6 Thomas FT., Szentpetery SS., Mammana RE., et al. Long-distance transportation of human hearts for transplantation. Ann Thorac Surg 1978; 26: 344–350.
- 7 Young JB., Naftel DC., Bourge RC and the Cardiac Transplant Research Database Group. Matching the heart donor and heart transplant recipient. Clues for successful expansion of the donor pool. J Heart Lung Transplant 1994; 13: 353–365.
- 8 Grant JW., Canter CE., Spray TL., et al. Elevated cardiac troponin I. A marker of acute graft failure in infant heart recipients. Circulation 1994; 90: 2618–2621.
- 9 Chakko S., Fernandez A., Mellman TA., et al. Cardiac manifestations of cocaine abuse: a cross-sectional study of asymptomatic men with a history of longterm abuse of ‘crack’ cocaine. J Am Coll Cardiol 1992; 20: 1168–1174.
- 10 Warner EA. Cocaine abuse. Ann Intern Med 1993; 119: 226–235.
- 11 Freimark D., Czer LSC., Admon D., et al. Donors with a history of cocaine use: effect of survival and rejection frequency after heart transplantation. J Heart Lung Transplant 1994; 13: 1138–1144.
- 12 Galinanes M., Smolenski RT., Hearse DJ. Brain death-induced cardiac contractile dysfunction and long-term cardiac preservation. Rat heart studies of the effects of hypophysectomy. Circulation 1993; 88: 11270–280.
- 13 Galinanes M., Hearse DJ. Brain death-induced impairment of cardiac contractile performance can be reversed by explanation and may not preclude the use of hearts for transplantation. Circ Res 1992; 71: 1213–1219.
- 14 Clifton GL., McCormick WF., Grossman RG. Neuropathology of early and late death after head injury. Neurosurgery 1981; 8: 309–314.
- 15 Novitzky D., Cooper DKC., Reichart B. Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors. Transplantation 1987; 42: 852–854.
- 16 Novitzky D. Novel actions of thyroid hormone: the role of triiodothyronine in cardiac transplantation. Thyroid 1996; 6: 531–536.
- 17 Meldrum DR., Cleveland JC., Sheridan BC., et al. Differential effects of adenosine preconditioning on the postischemic rat myocardium. J Surg Res 1996; 65: 159–164.
- 18 Yabe K., Ishishita H., Tanonake K., et al. Pharmacologic preconditioning induced by beta-adrenergic stimulation is mediated by activation of protein kinase C. J. Cardiovasc Pharm 1998; 32: 962–968.
- 19 Menasche P., Mouas C., Grousset C. Is potassium channel opening an effective form of preconditioning before cardioplegia Ann Thorac Surg 1996; 61: 1764–1768.
- 20 Demmy TL., Biddle JS., Bennett LE., et al. Organ preservation solutions in heart transplantation—patterns of usage and related survival. Transplantation 1997; 63: 262–269.
- 21 Leaf A. Maintenance of concentration gradients and regulation of cell volume. Ann NY Acad Sci 1959; 72: 396–398.
- 22 Katz AM., Reuter H. Cellular calcium and cardiac cell death. Am J Cardiol 1979; 44: 188–190.
- 23 Wang ZC., Nicolosi AC., Detwiler PW., et al. Effects of crystalloid, blood, and University of Wisconsin perfusates on weight, water content, and left ventricular compliance in an edema-prone, isolated porcine heart model. J Thorac Cardiovasc Surg 1992; 103: 504–513.
- 24 Sumimoto R., Jamieson NV., Kamada N. Examination of the role of the impermeants lactobionate and raffinose in a modified UW solution. Transplantation 1990; 50: 573–576.
- 25 Ferreira R., Burgos M., Llesuy S., et al. Reduction of reperfusion injury with mannitol cardioplegia. Ann Thorac Surg 1989; 48: 77–84.
- 26 Batty PR., Hicks GL., DeWeese JA., et al. Optimal osmolality for cold storage of the cardiac explant. J Surg Res 1990; 48: 601–605.
- 27 Bolli R., Patel BS., Jeroudi MO., et al. Demonstration of free radical generation in stunned myocardium of intact dogs with the use of the spin trap α-phenyl Ntert-butyl nitrone. J Clin Invest 1988; 82: 476–485.
- 28 Bolli R., Jeroudi MO., Patel BS., et al. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 1989; 86: 4695–4699.
- 29 Wolkowicz PE., Caulfied JB. Cardioplegia with aged UW solution induces loss of cardiac collagen. Transplantation 1991; 51: 898–901.
- 30 Sanborn T., Gavin W., Berkowitz S., et al. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart. Am J Physiol 1979; 237: H535–541.
- 31 Penhkurenen KJ., Takala TES., Nuutinen EM., et al. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am J Physiol 1983; 244: H281–288.
- 32 Jeevanandam V., Barr ML., Auteri JS., et al. University of Wisconsin solution versus crystalloid cardioplegia for human donor heart preservation: A randomized blinded prospective clinical trial. J Thorac Cardiovasc Surg 1992; 103: 194–199.
- 33 Stein DG., Drinkwater DC., Laks H., et al. Cardiac preservation in patients undergoing transplantation: a clinical trial comparing University of Wisconsin solution and Stanford solution. J Thorac Cardiovasc Surg 1991; 102: 657–665.
- 34 Pearl JM., Laks H., Drinkwater DC., et al. Loss of endothelium-dependent vasodilatation and nitric oxide release after myocardial protection with University of Wisconsin solution. J Thorac Cardiovasc Surg 1996; 112: 103–110.
- 35 Drinkwater DC., Rudis E., Laks H., et al. University of Wisconsin solution versus Stanford cardioplegic solution and the development of cardiac allograft vasculopathy. J Heart Lung Transplant 1995; 14: 891–896.
- 36 Stringham JC., Love RB., Welter D., et al: Does University of Wisconsin solution harm the transplanted heart J Heart Lung Transplant 1999; 18: 587–596.
- 37 Hardy, JD., Webb WR., Dalton ML. Jr, et al. Lung homotransplantation in man: Repot of the initial case. JAMA 1963; 186: 1065–1074.
- 38 The Toronto Lung Transplant Group. Unilateral lung transplantation for pulmonary fibrosis. N Engl J Med 1986; 314: 1140–1145.
- 39 Jamieson SW., Stinson EB., Oyer PE., et al. Operative technique for heart-lung transplantation. J Thorac Cardiovasc Surg 1984; 87: 930–935.
- 40 Hardesty RL., Griffith BP. Procurement for combined heart-lung transplantation. Bilateral thoracotomy with sternal transection, cardiopulmonary bypass, and profound hypothermia. J Thorac Cardiovasc Surg 1985; 89: 795–799.
- 41 Yacoub MH., Khaghani A., Banner N., et al. Distant organ procurement for heart and lung transplantation. Transplant Proc 1989; 21: 2548–2550.
- 42 Baldwin JC., Frist WH., Starkey TD., et al. Distant organ procurement for combined heart and lung transplantation using a pulmonary artery flush and simple topical hypothermia for graft preservation. Ann Thorac Surg 1987; 43: 670–673.
- 43 Sundaresan S., Trachiotis GD., Aoe M., et al. Donor lung procurement: Assessment and operative technique. Ann Thorac Surg 1993; 56: 1409–1413.
- 44 Sundaresan S., Semenkovich J., Ochoa L., et al. Successful outcome of lung transplantation is not compromised by the use of marginal donor lungs. J Thorac Cardiovasc Surg 1995; 109: 1075–1080.
- 45 Puskas JD., Hirai T., Christie N., et al. Reliable 30-hour lung preservation by donor lung hyperinflation. J Thorac Cardiovasc Surg 1992; 104: 1075–1083.
- 46 Haniuda M., Hasegawa S., Shiraishi T., et al. Effects of inflation volume during lung preservation on pulmonary capillary permeability. J Thorac Cardiovasc Surg 1996; 112: 85–93.
- 47 Aoe M., Okiabayashi K., Cooper JD., et al. Hyperinflation of canine lung allograft during storage increases reperfusion pulmonary edema. J Thorac Cardiovasc Surg 1996; 112: 94–102.
- 48 DeCampos KN., Keshavjee S., Liu M., et al. Optimal inflation volume for hypothermic preservation of rat lungs. J Heart Lung Transplant 1998; 17: 599–607.
- 49 Yamazaki F., Yokomise H., Keshavjee H., et al. The superiority of an extracellular fluid solution over Euro-Collins' solution for pulmonary preservation. Transplantation 1990; 49: 650–694.
- 50 Mayer E., Puskas JD., Cardoso PFG., et al. Reliable eighteen-hour lung preservation at 4° and 10°C by pulmonary artery flush after high-dose prostaglandin E1 administration. J Thorac Cardiovasc Surg 1992; 103: 1136–1142.
- 51 Matsumura Y., Kondo T., Fujimura S., et al. Extracellular-type phosphate buffered solution for lungterm lung preservation—experimental studies of canine and primate lung transplant. Cardiovasc Engin 1997; 2: 75–80.
- 52 Bolanowski PJR., Bauer J., Machiedo G., et al. Prostaglandin influence on pulmonary intravascular leukocyte aggregation during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1977; 73: 221–224.
- 53 Fantone JC., Kunkel SL., Ward PA., et al. Suppression by prostaglandin E1 of vascular permeability induced by vasoactive inflammatory mediators. J Immunol 1980; 125: 2491–2496.
- 54 Strom TB., Carpenter CB. Prostaglandin as an effective antirejection therapy in rat renal allograft recipients. Transplantation 1983; 35: 279–281.
- 55 Wisser W., Ringl H., Wekerle T., et al. A new flush solution for extended lung preservation. J Heart Lung Transplant 1995; 14: 289–295.
- 56 Bando T., Albes JM., Fehrenbach H., et al. Influence on potassium concentration on functional and structural preservation of the lung: where is the optimum J Heart Lung Transplant 1998; 17: 715–724.
- 57 Keshavee SH., McRitchie DI., Vittorini T., et al. Improved lung preservation with dextran 40 is not mediated by a superoxide radical scavenging mechanism. J Thorac Cardiovasc Surg 1992; 103: 326–328.
- 58 Lin PJ., Hsieh MJ., Cheng K., et al. University of Wisconsin solution extends lung preservation after prostaglandin E1 infusion. Chest 1994; 105: 255–261.
- 59 Kayano K., Toda K., Naka Y., et al. Superior protection in orthotopic rat lung transplantation with cyclic adenosine monophosphate and nitroglycerin-containing preservation solution. J Thorac Cardiovasc Surg 1999; 118: 135–144.
- 60 Sasaki S., Yasuda K., McCully JD., et al. Calcium channel blocker enhances lung preservation. J Heart Lung Transplant 1999; 18: 127–132.
- 61 Roberts RF., Nishanian GP., Carey JN., et al. A comparison of the new preservation solution Celsior to Euro-Collins and University of Wisconsin solutions in lung reperfusion injury. Transplantation 1999; 67: 152–155.
- 62 Matsuzaki Y., Waddell TK., Puskas JD., et al. Amelioration of post-ischemic lung reperfusion injury by prostaglandin E1. Am Rev Respir Dis 1993; 148: 882–889.
- 63 DeCampos KN., Keshavjee S., Liu M., et al. Prevention of rapid reperfusion-induced lung injury with prostaglandin E1 during the initial period of reperfusion. J Heart Lung Transplant 1998; 17: 1121–1128.
- 64 Nezu K., Kushibe K., Tojo T., et al. Protection against lipid peroxidation induced during preservation of lungs for transplantation. J Heart Lung Transplant 1994; 13: 990–1002.
- 65 Uthoff K., Zehr KJ., Lee PC., et al. Neutrophil modulation results in improved pulmonary function after 12 and 24 hours of preservation. Ann Thorac Surg 1995; 59: 7–13.
- 66 Yano M., Ando K., Fujino S., et al. Delayed administration of low-dose NPC18915 ameliorates lung ischemia-reperfusion injury. J Heart Lung Transplant 1998; 17: 622–628.
- 67 DeMeester SR., Molinari M., Shiraishi T., et al. Attenuation of lung isograft reperfusion injury with a combination of anti-ICAM and anti-α2 integrin monoclonal antibodies. Transplantation 1996; 62: 1477–1485.
- 68 Schmid RA., Yamashita M., Boasquevisque CH., et al. Carbohydrate selectin inhibitor CY-1503 reduces neutrophil migration and reperfusion injury in canine pulmonary allografts. J Heart Lung Transplant 1997; 16: 1054–1061.
- 69 Breda MA., Hall TS., Stuart RS., et al. Twenty-four hour lung preservation by hypothermia and leukocyte depletion. Heart Transplant 1985; 4: 325–329.
- 70 Ross SD., Tribble CG., Gaughen JR., et al. Reduced neutrophil infiltration protects against lung reperfusion injury after transplantation. Ann Thorac Surg 1999; 67: 1428–434.
- 71 Palmer RM., Ferrige AG., Moncada S. Nitric oxide release accounts for the biologic activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.
- 72 Kubes P., Granger DN. Nitric oxide modulates microvascular permeability. Am J Physiol 1992; 262: H611–615.
- 73 Kubes P., Suzuki M., Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–4655.
- 74 Yamashita M., Schmid RA., Ando K., et al. Nitroprusside ameliorates lung allograft reperfusion injury. Ann Thorac Surg 1996; 62: 791–797.
- 75 Yamashita M., Schmid RA., Fujino S., et al. Nicorandil, a potent adenosine triphosphate-sensitive potassium-channel opener, ameliorates lung allograft reperfusion injury. J Thorac Cardiovasc Surg 1996; 112: 1307–1314.
- 76 Naka Y., Chowdhury NC., Oz MC., et al. Nitroglycerin maintains graft vascular homeostasis and enhances preservation in an orthotopic rat lung transplant model. J Thorac Cardiovasc Surg 1995; 109: 206–211.
- 77 Okabayashi, K., Triantafillou, AN., Yamashita M., et al. Inhaled nitric oxide improves lung allograft function after prolonged storage. J Thorac Cardiovasc Surg 1996; 112: 293–299.
- 78 Fujino S., Itaru N., Triantafillou AN., et al. Inhaled nitric oxide at the time of harvest improves early lung allograft function. Ann Thorac Surg 1997; 63: 1383–1390.
- 79 Date H., Triantafillou AN., Trulock EP., et al. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg 1996; 111: 913–919.
- 80 Hiratsuka M., Yano M., Mora BN., et al. Heat shock pretreatment protects lung isografts from subsequents ischemia-reperfusion injury. J Heart Lung Transplant (In press).
- 81 Hiratsuka M., Mora BN., Yano M., et al. Gene transfer of heart shock protein 70 protects lung isografts from ischemia-reperfusion injury. Ann Thorac Surg 1999; 67: 101–108.
- 82 Pohl M., Cooper JD., Patterson GA. The international status of lung transplantation. (abstract) J Heart Lung Transplant 1997; 16: 54.
- 83 Wierup P., Bolys R., Steen S. Gas function one month after transplantation of lungs topically cooled for hours in the non-heart-beating cadaver after failed resuscitation. J Heart Lung Transplant 1999; 18: 133–138.