TRACE METAL REDUCTION BY PHYTOPLANKTON: THE ROLE OF PLASMALEMMA REDOX ENZYMES1,2
Gary J. Jones
Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology 48–213 Cambridge, Massachusetts 02139
Address for reprint requests.
Search for more papers by this authorBrian P. Palenik
Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology 48–213 Cambridge, Massachusetts 02139
Search for more papers by this authorFrançois M. M. Morel
Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology 48–213 Cambridge, Massachusetts 02139
Search for more papers by this authorGary J. Jones
Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology 48–213 Cambridge, Massachusetts 02139
Address for reprint requests.
Search for more papers by this authorBrian P. Palenik
Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology 48–213 Cambridge, Massachusetts 02139
Search for more papers by this authorFrançois M. M. Morel
Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology 48–213 Cambridge, Massachusetts 02139
Search for more papers by this authorAccepted: 20 November 1986.
This research was supported in part by NSF grant 8317532-OCE and ONR grant N00014-86-K-0325.
ABSTRACT
The phytoplankton cell surface reduces external copper(II) and iron(III) complexes and redox dyes. This reductive activity appears to be mediated by one or more plasmalemma redox enzymes. Trace metal complexes are directly reduced by the redox enzyme, therefore the reduction rate is not regulated by the metal free ion activity in solution. This is in direct contrast to previous measurements of trace metal interactions with the phytoplankton cell membrane. Half-saturation constants for the reduction of Cu(II) complexes with carbonate, phenanthroline and bathocuproinedisulfonate are in the range 2.3–14.7 μM, which suggests that trace metal complexes are not the main electron acceptor in natural waters. In the diatom Thalassiosira weissflogii there is additional reductive activity associated with the cell wall.
References
- Amy, N. K., Garrett, R. H. & Anderson, B. M. 1977. Reactions of the Neurospora crassa nitrate reductase with NAD(P) analogs. Biochem. Biophys. Acta 480: 83–95.
- Anderson, M. A. 1981. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 150 pp.
- Anderson, M. A. & Morel, F. M. M. 1980. Uptake of Fe(II) by a diatom in oxic culture medium. Mar. Biol. Lett. 1: 263–8.
- Anderson, M. A. 1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27: 789–813.
- Barea, J. L. & Cardenas, J. 1975. The nitrate reducing enzyme system of Chlamydomonas reinhardii. Arch. Microbiol. 105: 21–5.
-
Crane, F. L.,
Löw, H. &
Clark, M. G.
1985a. Plasma membrane redox enzymes. In A. N. Martonosi [Ed.] The Enzymes of Biological Membranes, Vol. 4. Plenum Press,
New York
, pp. 465–510.
10.1007/978-1-4684-4604-3_14 Google Scholar
- Crane, F. L., Sun, I. L., Clark, M. G., Grebing, C. & Löw, H. 1985b. Transplasma-membrane redox systems in growth and development. Biochim. Biophys. Acta 811: 233–64.
- Eppley, R. W. & Sloan, P. R. 1965. Carbon balance experiments with marine phytoplankton. J. Fish Res. Board Canada 22: 1083–97.
- Fogg, G. E. 1966. The extracellular products of algae. Oceanogr. Mar. Biol. Annu. Rev. 4: 195–212.
- Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–39.
-
Harrison, G. I. &
Morel, F. M. M.
1986. Response of the marine diatom Thalassiosira weissflogii to iron stress.
Limnol. Oceanogr.
31: 981–97.
10.4319/lo.1986.31.5.0989 Google Scholar
- Hewitt, E. J. 1975. Assimilatory nitrate-nitrite reduction. Annu. Rev. Plant Physiol. 26: 73–100.
-
Hewitt, E. J. &
Notton, B. A.
1980. Nitrate reductase systems in eukaryotic and prokaryotic organisms. In M. P. Coughlan [Ed.] Molybdenum and Molybdenum-Containing Enzymes Pergamon Press,
Oxford
, pp. 273–325.
10.1016/B978-0-08-024398-6.50013-4 Google Scholar
- Hughes, M. N. 1981. The Inorganic Chemistry of Biological Processes, 2nd ed. John Wiley, New York , p. 49.
- Jones, G. J., Waite, T. D. & Smith, J. D. 1985. Light-dependent reduction of copper(II) and its effect on cell-mediated, thioldependent superoxide production. Biochem. Biophys. Res. Comm. 128: 1031–6.
- Kaback, H. R., Reeves, J. P., Short, S. A. & Lombardi, F. J. 1974. Mechanisms of active transport in isolated bacterial membrane vesicles. XVIII. The mechansim of action of carbonylcyanide m-chlorophenylhydrazone. Arch. Biochem. Biophys. 160: 215–22.
- Kilberg, M. S. & Christensen, N. H. 1979. Electron-transferring enzymes in the plasmamembrane of the Ehrlich ascites tumor cell. Biochemistry 18: 1525–30.
- Klapper, M. H. 1970. Rapid binding of PMB to non-SH groups on hemerythrin. Biochem. Biophys. Res. Comm. 38: 172–9.
- Losada, M. 1976. Metallo-enzymes of the nitrate reducing system. J. Mol. Catal. 1: 245–64.
- Löw, H. & Crane, F. L. 1976. Hormone regulated redox function in plasma membranes. FEBS Lett. 68: 157–9.
- MacKellar, W. C. 1981. A transmembrane NADH dehydrogenase in porcine erythrocyte plasma membrane. Ph.D. thesis, Purdue University, West Lafayette, 172 pp.
- Morel, F. M. M., Rueter, J. G., Anderson, D. M. & Guillard, R. R. L. 1979. Aquil: a chemically defined phytoplankton culture medium for trace metal studies. J. Phycol. 15: 135–41.
- Ramasarma, T., MacKellar, W. & Crane, F. L. 1980. Nature of NADH: Acceptor oxidoreductase in plasma membranes of mouse liver. Ind. J. Biochem. Biophys. 17: 163–7.
- Redinbaugh, M. G. & Campbell, W. H. 1983. Reduction of ferric citrate catalyzed by NADH-nitrate reductase. Biochem. Biophys. Res. Comm. 114: 1182–8.
- Sijmons, P. C., Van den Briel, W. & Bienfait, H. F. 1984. Cytosolic NADPH is the electron donor for extracellular Fe(III) reduction in iron-deficient bean roots. Plant Physiol. 75: 219–21.
- Slater, E. C. 1966. Flavins and Flavoproteins Elsevier, Amsterdam , 549 pp.
- Smyth, D. G., Blumenfeld, O. O. & Konigsberg, W. 1964. Reactions of N-ethylmaleimide with peptides and amino acids. Biochem. J. 91: 589–95.
- Solomonson, L. P. & Vennesland, B. 1972. Properties of a nitrate reductase of Chlorella. Biochim. Biophys. Acta 267: 544–57.
- Sun, I. L., Crane, F. L., Löw, H. & Grebing, C. 1984. Transplasma membrane redox stimulates HeLa cell growth. Biochem. Biophys. Res. Comm. 125: 649–54.
- Sunda, W. G. & Huntsman, S. A. 1985. Regulation of cellular manganese and manganese transport rates in the unicellular alga Chlamydomonas. Limnol. Oceanogr. 30: 71–80.
- Ullrich, W. R. 1974. Der nitrat-und nitritabhängige photosynthetische O2-Entwicklung in N2 bei Ankistrodesmus braunii. Planta (Berl.) 116: 143–52.
- Waite, T. D. 1983. Photoredox properties of iron in natural waters. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 261 pp.
- Westall, J. C., Zachary, J. L. & Morell, F. M. M. 1976. MINEQL: a computer program for the calculation of chemical equilibrium composition of aqueous systems. Tech. note no. 18, Ralph M. Parsons Laboratory for Water Resources and Environmental Engineering, Massachusetts Institute of Technology, 91 pp.