Pathogenesis of Helicobacter pylori Infection
Céu Figueiredo
IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal;
Faculty of Medicine, University of Porto, Porto, Portugal;
Search for more papers by this authorJosé Carlos Machado
IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal;
Faculty of Medicine, University of Porto, Porto, Portugal;
Search for more papers by this authorCorresponding Author
Yoshio Yamaoka
Department of Medicine/Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
Reprint requests to: Yoshio Yamaoka, Department of Medicine/Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. Houston, Texas 77030, USA. E-mail: [email protected]Search for more papers by this authorCéu Figueiredo
IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal;
Faculty of Medicine, University of Porto, Porto, Portugal;
Search for more papers by this authorJosé Carlos Machado
IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal;
Faculty of Medicine, University of Porto, Porto, Portugal;
Search for more papers by this authorCorresponding Author
Yoshio Yamaoka
Department of Medicine/Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
Reprint requests to: Yoshio Yamaoka, Department of Medicine/Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd. Houston, Texas 77030, USA. E-mail: [email protected]Search for more papers by this authorABSTRACT
As with many infectious diseases, only a fraction of people infected with Helicobacter pylori develop clinical disease, and host genetics, host immune response, and bacterial virulence factors appear to play critical roles. There has been considerable interest in putative bacterial virulence factors and, while several have been identified, it is not clear whether they act independently or in concert. Disease associations have been proposed for the cag pathogenicity island (PAI), vacA, and genes encoding outer membrane proteins (OMPs). Numerous studies published in the last year have provided new insights into the function of these putative virulence factors in gastroduodenal pathogenesis. This article will review the recent novel findings (from April 2004) for the roles of the putative disease-associated virulence factors as well as their interaction with host.
References
- 1 Hirata Y, Yanai A, Shibata W, Mitsuno Y, Maeda S, Ogura K, Yoshida H, Kawabe T, Omata M. Functional variability of cagA gene in Japanese isolates of Helicobacter pylori. Gene 2004; 343: 165–72.
- 2 Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 2004; 127: 514–23.
- 3 Zhu YL, Du Zheng SQ, Qian KD, Fang PC. Characterization of CagA variable region of Helicobacter pylori isolates from Chinese patients. World J Gastroenterol 2005; 11: 880–4.
- 4 Tao R, Fang PC, Liu HY, Jiang YS, Chen J. A new subtype of 3′ region of cagA gene in Helicobacter pylori strains isolated from Zhejiang Province in China. World J Gastroenterol 2004; 10: 3284–8.
- 5 Moese S, Selbach M, Kwok T, Brinkmann V, Konig W, Meyer TF, Backert S. Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways. Infect Immun 2004; 72: 3646–9.
- 6 Al-Ghoul L, Wessler S, Hundertmark T, Kruger S, Fischer W, Wunder C, Haas R, Roessner A, Naumann M. Analysis of the type IV secretion system-dependent cell motility of Helicobacter pylori-infected epithelial cells. Biochem Biophys Res Commun 2004; 322: 860–6.
- 7 El-Etr SH, Mueller A, Tompkins LS, Falkow S, Merrell DS. Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. J Infect Dis 2004; 190: 1516–23.
- 8 Higashi H, Nakaya A, Tsutsumi R, et al. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 2004; 279: 17205–16.
- 9 Selbach M, Moese S, Backert S, Jungblut PR, Meyer TF. The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics 2004; 4: 2961–8.
- 10 Thompson LJ, Danon SJ, Wilson JE, O'Rourke JL, Salama NR, Falkow S, Mitchell H, Lee A. Chronic Helicobacter pylori infection with Sydney strain 1 and a newly identified mouse-adapted strain (Sydney strain 2000) in C57BL/6 and BALB/c mice. Infect Immun 2004; 72: 4668–79.
- 11 Graham DY, Opekun AR, Osato MS, El-Zimaity HM, Lee CK, Yamaoka Y, Qureshi WA, Cadoz M, Monath TP. Challenge model for Helicobacter pylori infection in human volunteers. Gut 2004; 53: 1235–43.
- 12 Lu H, Hsu PI, Graham DY, Yamaoka Y. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 2005; 128: 833–48.
- 13 Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 2005; 3: 320–32.
- 14 Geisse NA, Cover TL, Henderson RM, Edwardson JM. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Biochem J 2004; 381: 911–7.
- 15 Yahiro K, Wada A, Yamasaki E, et al. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin. J Biol Chem 2004; 279: 51013–21.
- 16 Torres VJ, Ivie SE, McClain MS, Cover TL. Functional properties of the P33 and P55 domains of the Helicobacter pylori vacuolating cytotoxin. J Biol Chem 2005; 280: 21107–14.
- 17 Kim S, Chamberlain AK, Bowie JU. Membrane channel structure of Helicobacter pylori vacuolating toxin: role of multiple GXXXG motifs in cylindrical channels. Proc Natl Acad Sci USA 2004; 101: 5988–91.
- 18 Li Y, Wandinger-Ness A, Goldenring JR, Cover TL. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol Biol Cell 2004; 15: 1946–59.
- 19 Argent RH, McGarr C, Atherton JC. Brefeldin A enhances Helicobacter pylori vacuolating cytotoxin-induced vacuolation of epithelial cells. FEMS Microbiol Lett 2004; 237: 163–70.
- 20 Aviles-Jimenez F, Letley DP, Gonzalez-Valencia G, Salama N, Torres J, Atherton JC. Evolution of the Helicobacter pylori vacuolating cytotoxin in a human stomach. J Bacteriol 2004; 186: 5182–5.
- 21 Sundrud MS, Torres VJ, Unutmaz D, Cover TL. Inhibition of primary human T-cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci USA 2004; 101: 7727–32.
- 22 Bäckström A, Lundberg C, Kersulyte D, Berg DE, Boren T, Arnqvist A. Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc Natl Acad Sci USA 2004; 101: 16923–8.
- 23 Hennig EE, Mernaugh R, Edl J, Cao P, Cover TL. Heterogeneity among Helicobacter pylori strains in expression of the outer membrane protein BabA. Infect Immun 2004; 72: 3429–35.
- 24 Aspholm-Hurtig M, Dailide G, Lahmann M, et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 2004; 305: 519–22.
- 25 Unemo M, Aspholm-Hurtig M, Ilver D, Bergstrom J, Boren T, Danielsson D, Teneberg S. The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem 2005; 280: 15390–7.
- 26 De Jonge R, Pot RG, Loffeld RJ, Van Vliet AH, Kuipers EJ, Kusters JG. The functional status of the Helicobacter pylori sabB adhesin gene as a putative marker for disease outcome. Helicobacter 2004; 9: 158–64.
- 27 Yamaoka Y, Kudo T, Lu H, Casola A, Brasier AR, Graham DY. Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infection. Gastroenterology 2004; 126: 1030–43.
- 28 Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, Josenhans C, Suerbaum S. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA 2004; 101: 5024–9.
- 29 Linden S, Mahdavi J, Hedenbro J, et al. Effects of pH on Helicobacter pylori binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem J 2004; 384: 263–70.
- 30 Linden S, Mahdavi J, Hedenbro J, Boren T, Carlstedt I. Rhesus monkey gastric mucins: oligomeric structure, glycoforms, and Helicobacter pylori binding. Biochem J 2004; 379: 765–75.
- 31 Clyne M, Dillon P, Daly S, O"Kennedy R, May FE, Westley BR, Drumm B. Helicobacter pylori interacts with the human single-domain trefoil protein TFF1. Proc Natl Acad Sci USA 2004; 101: 7409–14.
- 32 Kawakubo M, Ito Y, Okimura Y, Kobayashi M, Sakura K, Kasama S, Fukuda MN, Fukuda M, Katsuyama T, Nakayama J. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 2004; 305: 1003–6.
- 33 Prakobphol A, Boren T, Ma W, Zhixiang P, Fisher SJ. Highly glycosylated human salivary molecules present oligosaccharides that mediate adhesion of leukocytes and Helicobacter pylori. Biochemistry 2005; 44: 2216–24.
- 34 Lin SN, Ayada K, Zhao Y, et al. Helicobacter pylori heat-shock protein 60 induces production of the pro-inflammatory cytokine IL8 in monocytic cells. J Med Microbiol 2005; 54: 225–33.
- 35 Takenaka R, Yokota K, Ayada K, et al. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology 2004; 150: 3913–22.
- 36 Lee KH, Cho MJ, Yamaoka Y, et al. Alanine-threonine polymorphism of Helicobacter pylori RpoB is correlated with differential induction of interleukin-8 in MKN45 cells. J Clin Microbiol 2004; 42: 3518–24.
- 37 Torok AM, Bouton AH, Goldberg JB. Helicobacter pylori induces interleukin-8 secretion by Toll-like receptor 2- and Toll-like receptor 5-dependent and -independent pathways. Infect Immun 2005; 73: 1523–31.
- 38 Mandell L, Moran AP, Cocchiarella A, Houghton J, Taylor N, Fox JG, Wang TC, Kurt-Jones EA. Intact Gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via Toll-like receptor 2 but not Toll-like receptor 4. Infect Immun 2004; 72: 6446–54.
- 39 Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H, Chen CC. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 2004; 66: 1465–77.
- 40 Gewirtz AT, Yu Y, Krishna US, Israel DA, Lyons SL, Peek RM Jr. Helicobacter pylori flagellin evades Toll-like receptor 5-mediated innate immunity. J Infect Dis 2004; 189: 1914–20.
- 41 Viala J, Chaput C, Boneca IG, et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004; 5: 1166–74.
- 42 Ding SZ, O'Hara AM, Denning TL, et al. Helicobacter pylori and H2O2 increase AP endonuclease-1/redox factor-1 expression in human gastric epithelial cells. Gastroenterology 2004; 127: 845–58.
- 43 Rieder G, Tessier AJ, Qiao XT, Madison B, Gumucio DL, Merchant JL. Helicobacter-induced intestinal metaplasia in the stomach correlates with Elk-1 and serum response factor induction of villin. J Biol Chem 2005; 280: 4906–12.
- 44 Ashktorab H, Frank S, Khaled AR, Durum SK, Kifle B, Smoot DT. Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori. Gut 2004; 53: 805–13.
- 45 Eguchi H, Carpentier S, Kim SS, Moss SF. P27kip1 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori. Gut 2004; 53: 797–804.
- 46 Neu B, Rad R, Reindl W, Neuhofer M, Gerhard M, Schepp W, Prinz C. Expression of tumor necrosis factor-alpha-related apoptosis-inducing ligand and its proapoptotic receptors is down-regulated during gastric infection with virulent cagA+/vacAs1+Helicobacter pylori strains. J Infect Dis 2005; 191: 571–8.
- 47 Galgani M, Busiello I, Censini S, Zappacosta S, Racioppi L, Zarrilli R. Helicobacter pylori induces apoptosis of human monocytes but not monocyte-derived dendritic cells: role of the cag pathogenicity island. Infect Immun 2004; 72: 4480–5.