L-NAME cotreatment did prevent neither mitochondrial impairment nor behavioral abnormalities in adult Wistar rats treated with vitamin A supplementation
Corresponding Author
Marcos Roberto de Oliveira
Correspondence and reprints: [email protected], [email protected]Search for more papers by this authorRicardo Fagundes da Rocha
Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
Search for more papers by this authorCarlos Eduardo Schnorr
Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
Search for more papers by this authorJosé Cláudio Fonseca Moreira
Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
Search for more papers by this authorCorresponding Author
Marcos Roberto de Oliveira
Correspondence and reprints: [email protected], [email protected]Search for more papers by this authorRicardo Fagundes da Rocha
Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
Search for more papers by this authorCarlos Eduardo Schnorr
Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
Search for more papers by this authorJosé Cláudio Fonseca Moreira
Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
Search for more papers by this authorAbstract
Vitamin A has been characterized as a potential neurotoxin, because ingestion of such vitamin – or its derivatives, the retinoids – at moderate to high doses elicits a myriad of deleterious effects, from acute intoxication involving head-ache, confusion, and ‘pseudo tumor cerebri’ to chronic, and perhaps irreversible, abnormalities, including irritability, anxiety, depression, and suicide ideation. Nevertheless, it still remains to be found the mechanism by which vitamin A induces cognitive decline. Based on the fact that vitamin A at clinical doses is a potent pro-oxidant agent to the central nervous system, we performed the present work to analyze whether a cotreatment with L-NAME at 30 mg/kg (four times a week) was able to prevent (or minimize) the biochemical and/or behavioral disturbances resulting from a 28-day daily supplementation with retinol palmitate at doses from 1000 to 9000 IU/kg/day. Then, we investigated mitochondrial function, redox parameters, and the levels of proteins potentially involved in neurodegenerative events, as for instance α-synuclein and receptor for advanced glycation endproducts. Besides, monoamine oxidase enzyme activity was quantified in this work. We observed that L-NAME cotreatment was not completely effective in preventing the redox disturbances induced by vitamin A supplementation. Moreover, L-NAME cotreatment did not affect the behavioral deficits elicited by vitamin A supplementation. We conclude that other parameters rather than NO levels or its derivatives, as for example ONOO−, take a more important role in mediating the negative effects triggered by vitamin A supplementation.
References
- 1 Snodgrass S.R. Vitamin neurotoxicity. Mol. Neurobiol. (1992) 6 41–73.
- 2 Allen L.H., Haskell M. Estimating the potential for vitamin A toxicity in women and young children. J. Nutr. (2002) 132 2907S–2919S.
- 3 Myhre A.M., Carlsen M.H., Bohn S.K., Wold H.L., Laake P., Blomhoff R. Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am. J. Clin. Nutr. (2003) 78 1152–1159.
- 4 O’Reilly K., Bailey S.J., Lane M.A. Retinoid-mediated regulation of mood: possible cellular mechanisms. Exp. Biol. Med. (2008) 233 251–258.
- 5 Tsunati H., Iwasaki H., Kawai Y. et al. Reduction of leukemia cell growth in a patient with acute promyelocytic leukemia treated by retinol palmitate. Leuk. Res. (1990) 14 595–600.
- 6 Tsunati H., Ueda T., Uchida M., Nakamura T. Pharmacological studies of retinol palmitate and its clinical effect in patients with acute non-lymphocytic leukemia. Leuk. Res. (1991) 15 463–471.
- 7 Fenaux P., Chomienne C., Degos L. Treatment of acute promyelocytic leukaemia. Best Pract. Res. Clin. Haematol. (2001) 14 153–174.
- 8 Mactier H., Weaver L.T. Vitamin A and preterm infants: what we know, what we don’t know, and what we need to know. Arch. Dis. Child. Fetal Neonatal Ed. (2005) 90 103–108.
- 9 Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systemic review and meta-analysis. J. Am. Med. Assoc. (2007) 297 842–857.
- 10 De Oliveira M.R., Moreira J.C.F. Acute and chronic vitamin A supplementation at therapeutic doses induces oxidative stress to submitochondrial particles isolated from cerebral cortex and cerebellum of adult rats. Toxicol. Lett. (2007) 173 145–150.
- 11 De Oliveira M.R., Silvestrin R.B., Mello e Souza T., Moreira J.C.F. Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats: effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology (2007) 28 1191–1199.
- 12 De Oliveira M.R., Pasquali M.A.B., Silvestrin R.B., Mello e Souza T., Moreira J.C.F. Vitamin A supplementation induces a prooxidative state in the striatum and impairs locomotory and exploratory activity of adult rats. Brain Res. (2007) 1169 112–119.
- 13 De Oliveira M.R., Silvestrin R.B., Mello e Souza T., Moreira J.C.F. Therapeutic vitamin A doses increase the levels of markers of oxidative insult in substantia nigra and decrease locomotory and exploratory activity in rats after acute and chronic supplementation. Neurochem. Res. (2008) 33 378–383.
- 14 De Oliveira M.R., Oliveira M.W.S., Behr G.A., Hoff M.L.M., Da Rocha R.F., Moreira J.C.F. Evaluation of the effects of vitamin A supplementation on adult rat substantia nigra and striatum redox and bioenergetics states: mitochondrial impairment, increased 3-nitrotyrosine and α-synuclein, but decreased D2 receptor contents. Prog. Neuropsychopharmacol. Biol. Psychiatry (2009) 33 353–362.
- 15 De Oliveira M.R., Oliveira M.W.S., Da Rocha R.F., Moreira J.C.F. Vitamin A supplementation at pharmacological doses induces nitrosative stress on the hypothalamus of adult Wistar rats. Chem. Biol. Interact. (2009) 180 407–413.
- 16 De Oliveira M.R., Oliveira M.W.S., Behr G.A., Moreira J.C.F. Vitamin A supplementation at clinical doses induces a dysfunction in the redox and bioenergetics states, but did not change neither caspases activities nor TNF-alpha levels in the frontal cortex of adult Wistar rats. J. Psychiatr. Res. (2009) 43 754–762.
- 17 Ferrer-Sueta G., Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem. Biol. (2009) 4 161–177.
- 18 Kerr I.G., Lippman M.E., Jenkins J., Myers C.E. Pharmacology of 13-cis-retinoic acid in humans. Cancer Res. (1982) 42 2069–2073.
- 19 Branzzell R.K., Vane F.M., Ehmann C.W., Colburn W.A. Pharmacokinetics of isotretinoin during repetitive dosing to patients. Eur. J. Clin. Pharmacol. (1983) 24 695–702.
- 20 Nulman I., Berkovitch M., Klein J. et al. Steady-state pharmacokinetics of isotretinoin and its 4-oxo metabolite: implications for fetal safety. J. Clin. Pharmacol. (1998) 38 926–930.
- 21 Hendrix C.W., Jackson K.A., Whitmore E. et al. The effect of isotretinoin on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Clin. Pharmacol. Ther. (2004) 75 464–475.
- 22 Ferguson S.A., Siitonen P.H., Cisneros F.J., Gough B., Young J.F. Steady state pharmacokinetics of oral treatment with 13-cis-retinoic acid or all-trans-retinoic acid in male and female adult rats. Basic Clin. Pharmacol. Toxicol. (2006) 98 582–587.
- 23 Klamt F., De Oliveira M.R., Moreira J.C.F. Retinol induces permeability transition and cytochrome c release from rat liver mitochondria. Biochim. Biophys. Acta (2005) 1726 14–20.
- 24 Shapira A.H., Mann V.M., Cooper J.M. et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem. (1990) 55 2142–2145.
- 25 Rustin P., Chretien D., Bourgeron T. et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta (1994) 228 35–51.
- 26 Poderoso J.J., Carreras M.C., Lisdero C., Riobo N., Schopfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. (1996) 328 85–92.
- 27 Strassburger M., Bloch W., Sulyok S. et al. Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo. Free Radic. Biol. Med. (2005) 38 1458–1470.
- 28 Weissbach H., Smith T.E., Daly J.W., Witkop B., Udenfriend S. A rapid spectrophotometric assay of monoamine oxidase based on the rate of disappearance of kynuramine. J. Biol. Chem. (1960) 235 1160–1163.
- 29 Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. (1974) 249 7130–7139.
- 30 Berg D., Youdim M.B.H., Riederer P. Redox imbalance. Cell Tissue Res. (2004) 318 201–213.
- 31 Sheehan D., Meade G., Foley V.M., Dowd C.A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. (2001) 360 1–16.
- 32 Lotharius J., Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci. (2002) 3 932–942.
- 33 Bozzi Y., Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci. (2006) 29 167–174.
- 34 Youdim M.B.H., Edmondson D., Tipton K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. (2006) 7 295–309.
- 35 Lucy J.A. Somepossible roles for vitamin A in membranes: micelle formation and electron transfer. Am. J. Clin. Nutr. (1969) 22 1033–1044.
- 36 Roels O.A., Anderson O.R., Lui N.S.T., Shah D.O., Trout M.E. Vitamin A and membranes. Am. J. Clin. Nutr. (1969) 22 1020–1032.
- 37 Rigobello M.P., Scutari G., Friso A., Barzon E., Artusi S., Bindoli A. Mitochondrial permeability transition and release of cytochrome c induced by retinoic acids. Biochem. Pharmacol. (1999) 58 665–670.